K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

Áp dụng vào tính tổng E:

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{200}.\left(1+2+3+....+200\right)\)

\(E=1+\frac{1}{2}.\frac{2.\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+....+\frac{1}{200}.\frac{200.\left(201+1\right)}{2}\)

\(E=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+......+\frac{1}{200}.\frac{200.201}{2}\)

\(E=1+\frac{1.2.3}{2.2}+\frac{1.3.4}{3.2}+......+\frac{1.200.201}{200.2}\)

\(E=1+\frac{3}{2}+\frac{4}{2}+......+\frac{201}{2}=\frac{1}{2}.\left(2+3+4+...+201\right)\)

Từ 2->201 có:201-1+1=201(số hạng)

=>\(2+3+4+....+201=\frac{201.\left(201+1\right)}{2}=20301\)

=>E=1/2.20301=20301/2=10150,5

11 tháng 5 2016

đáp án = 10150 , bạn sai chỗ nào đấy

19 tháng 3 2017

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)

\(=\frac{2+3+4+...+201}{2}\)

\(=\frac{\frac{201.202}{2}-1}{2}=10150\)

25 tháng 2 2017

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{200}.\frac{200.201}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)

\(=\frac{2+3+4+...+201}{2}\)

\(=\frac{\frac{201.\left(201+1\right)}{2}-1}{2}\)

\(=10150\)

6 tháng 3 2017

đmđmđmmt

đi mua đi mua đi mua mắm tôm

ko thèm trả lời
 

30 tháng 4 2019

\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{2}{4}\)

\(=\frac{3}{4}\)

30 tháng 4 2019

\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)

\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)

\(=\frac{25}{20}-\frac{-1}{20}\)

\(=\frac{26}{20}\)

\(=\frac{13}{10}\)

1 tháng 2 2018

các bạn giúp mình với nhé

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)