K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

2. CM đẳng thức

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

Ta có: \(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab=a^2+b^2=VT\)

b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

Ta có: \(VP=\left(a^2+b^2\right)^2-2a^2b^2=a^4+2a^2b^2+b^4-2a^2b^2=a^4+b^4=VT\)

10 tháng 8 2016

giúp mik bài 1 vs nhé

 

 

2 tháng 12 2016

a)

A-2B=2x2-4x+3 -2(x2+4x)

       =2x2-4x+3-2x2-8x

       =-12x+3

b)

A.B=(2x2-4x+3)(x2+4x)

     =2x4+8x3-4x3-16x2+3x2+12x

     =2x4+4x3-13x2+12x

2 tháng 12 2016

a, \(A-2B=2x^2-4x+3-2\left(x^2+4x\right)\)

\(=2x^2-4x+3-2x^2-8x\)

\(=-12x+3\)

Phần b tương tự.

Bài làm :

Bài 1 :

\(a,-2x^3y.\left(2x^2-3y+5y^2\right)\)

\(=-4x^5y+6x^3y^2-10x^3y^3\)

\(b,\left(x+1\right)\left(x^2-x+1\right)\)

\(=x^3-x^2+x+x^2-x+1\)

\(=x^3+1\)

\(c,\left(2x-1\right).\left(3x+2\right).\left(3-x\right)\)

\(=\left[\left(2x-1\right)\left(3x+2\right)\right]\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2-6x^3+12x-4x^2-9x+3x^2-6+2x\)

\(=-6x^3+\left(18x^2-4x^2+3x^2\right)+\left(12x-9x+2x\right)-6\)

\(=-6x^3+17x^2+5x-6\)

Bài 2 :

\(\left(a+b\right).\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+ba^3-a^2b^2+ab^3-b^4\)

\(=a^4+\left(-a^3b+ba^3\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)-b^4\)

\(=a^4-b^4\)

=> đpcm 

Học tốt nha

2 tháng 4 2020

a, đkxđ:x# 2 ,  x# -2

b, 

     A  =   \(\frac{x+1}{x-2}\)=0

<=>      x + 1 = 0

<=>      x = -1

c,B=\(\frac{x2}{x^2-4}\)

Mà x= \(-\frac{1}{2}\)

<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)

<=>\(\frac{1}{4}:\frac{-15}{4}\)

<=>\(\frac{1}{4}.\frac{4}{-15}\)

<=>\(\frac{-1}{15}\)

d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)

                \(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)

\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)

\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)

23 tháng 12 2018

a) \(2x\left(4x^2-1\right)\)

\(=8x^3-2x\)

b) \(\left(6y^3+3y^2-9y\right):3y\)

\(=2y^2+y-3\)

23 tháng 12 2018

\(a,2x\left(4x^2-1\right)=2x.4x^2-2x=8x^3-2x\)

\(b,\left(6y^3+3y^2-9y\right):3y\)

\(=6y^3:3y+3y^2:3y-9y:3y\)

\(=2y^2+y-3\)

11 tháng 12 2018

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

11 tháng 12 2018

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)

NM
16 tháng 12 2020

bài 1.

a.\(\left(x+4\right)\left(x^2-4x+16\right)=x^3-4^3=x^3-64\)

b.\(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{27}\)

bài 2.

a.\(892^2+892.216+108^2=892^2+2.892.108+108^2\)

\(=\left(892+108\right)^2=1000^2=1_{ }000_{ }000\)

b.\(36^2+26^2-52.36=36^2+26^2-2.26.36=\left(36-26\right)^2=10^2=100\)