Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\left(\frac{27}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+\frac{1}{2}\)
\(\Rightarrow A=1+1+\frac{1}{2}\)
\(\Rightarrow A=\frac{5}{2}\)
tíc mình nha
d: \(\dfrac{1}{27}:\left(-\dfrac{1}{3}\right)^2+75\%\cdot\left(-\dfrac{2^2}{3}\right)\)
\(=\dfrac{1}{27}:\dfrac{1}{9}+\dfrac{3}{4}\cdot\dfrac{-4}{3}\)
\(=\dfrac{1}{3}-1\)
\(=-\dfrac{2}{3}\)
7 3 + − 5 6 + − 2 3 = 7 3 + − 5 6 + − 2 3 = 7 3 + − 2 3 + − 5 6 = 5 3 + − 5 6 = 10 + − 5 6 = 5 6
A = 6 -2/3 + 1 /2 - 5 -5/3 +3/2 -3 + 7/3 - 5/2
= (6 - 5 - 3) - ( 2/3 -5/3 + 7/3 ) + ( 1/2 +3/2 - 5/2)
= -2 + 0 -1/2 = -5/2
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5=1+1+0,5=2,5\)
Ta có: c = a + b + ab = (a+1)(b+1) = - 1
Để xuất hiện số 2020 thì trên bảng phải tồn tại hai số a, b sao cho: (a + 1)(b +1) - 1 = 2020
=> (a+1) (b + 1) = 2021 = 1.2021=43.47
Không mất tính tổng quát: g/s a < b => a + 1< b + 1
TH1: a + 1 = 1 ; b + 1 = 2021
=> a = 0 loại vì số 1 là số bé nhất trên bảng
Th2: a +1 = 43; b + 1 = 47 <=> a = 42 ; b = 46
Xét xem số 42; 46 có thể xuất hiện trên bảng được không
Xét số 42. khi đó trên bảng tồn tại số a1; b1 sao cho: 42 = (a1 + 1)(b1+1) - 1
<=> (a1 + 1)(b1+1) = 43 = 43.1 => loại vì a1 hoặc b1 =0
Vậy không làm xuất hiện số 42 trên bảng nên không thể làm xuất hiện số 2020.
Số 2021; 2019 tương tự