Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)
\(A=\dfrac{x^2-2x}{x^2+x-6}.\dfrac{x^2-9}{x^2-3x}\)
\(A=\dfrac{x\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)
\(A=\dfrac{x}{\left(x+3\right)}.\dfrac{\left(x+3\right)}{x}=1\)
\(b,\)
\(B=\dfrac{2x^2+5x-3}{x^2-9}.\dfrac{4x^2-1}{x^2-6x+9}\)
\(B=\dfrac{\left(x+3\right)\left(2x-1\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(x-3\right)^2}\)
\(B=\dfrac{\left(2x-1\right)}{\left(x-3\right)}.\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(x-3\right)^2}\)
\(B=\dfrac{\left(2x-1\right)^2.\left(2x+1\right)}{\left(x-3\right)^3}\)
\(\begin{array}{l}a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\\ = \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x + 7}}\\ = x + 7 - \left( {x - 7} \right) = 14\end{array}\)
\(\begin{array}{l}b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\left( {\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{2{\rm{x}} - 25}}{{x + 1945}}} \right)\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x + 2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{x + 1975}}{{x + 1945}} = \dfrac{{19{\rm{x}} + 8}}{{x + 1945}}\end{array}\)
dễ thì giải cho người ta đi,bạn thông minh hơn thì thay vì ns người khác thì giúp người khác sẽ tốt hơn đó
a/ \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^2}=\dfrac{2\left(x^2-10x+25\right)\cdot\left(x^2-1\right)}{3\left(x+1\right)\cdot4\left(x-5\right)^2}=\dfrac{2\left(x-5\right)^2\left(x-1\right)\left(x+1\right)}{12\left(x+1\right)\left(x-5\right)^2}=\dfrac{x+1}{6}\)
b/ \(\dfrac{6x-3}{5x^2+x}\cdot\dfrac{25x^2+10x+1}{1-8x^2}=-\dfrac{3\left(1-2x\right)\cdot\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}=\dfrac{3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
c/ \(\dfrac{3x^2-x}{x^2-1}\cdot\dfrac{1-x^4}{\left(1-3x\right)^3}=\dfrac{x-3x^2}{1-x^2}\cdot\dfrac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1-3x\right)^3}=\dfrac{x\left(1-3x\right)\left(1-x^2\right)\left(1+x^2\right)}{\left(1-x^2\right)\left(1-3x\right)^3}=\dfrac{x\left(x^2+1\right)}{\left(1-3x\right)^3}\)
a)\(\dfrac{x^2}{x-1}+\dfrac{1-2x}{x-1}\)
=\(\dfrac{x^2+1-2x}{x-1}\)
=\(\dfrac{x^2-2x+1}{x-1}\)
=\(\dfrac{\left(x-1\right)^2}{x-1}\)
= x - 1
b) \(\dfrac{x}{x-3}\) + \(\dfrac{-9}{x^2-3x}\)
=\(\dfrac{x}{x-3}\)+ \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x.x}{x\left(x-3\right)}\) + \(\dfrac{-9}{x\left(x-3\right)}\)
=\(\dfrac{x^2+3^2}{x\left(x-3\right)}\)
=\(\dfrac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}\)
=\(\dfrac{x+3}{x}\)
#Fiona
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
\(a,=\dfrac{5x}{4y^3}\times\left(\dfrac{-20y}{x^4}\right)=\dfrac{-100xy}{4x^4y^3}=\dfrac{-25}{x^3y^2}\\ b,=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+4\right)}\times\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
\(c,=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\times\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x+3\right)^2.\left(x^2+2x+4\right)}\)
a) \(\dfrac{5x}{4y^3}:\left(-\dfrac{x^4}{20y}\right)=\dfrac{5x}{4y^3}\cdot\left(-\dfrac{20y}{x^4}\right)=\dfrac{5\cdot-5}{y^2\cdot x^3}=\dfrac{-25}{x^3y^2}\)
b) \(\dfrac{x^2-16}{x+4}:\dfrac{2x-8}{x}=\left(x-4\right)\cdot\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
c) \(\dfrac{2x+6}{x^3-8}:\dfrac{\left(x+3\right)^3}{2x-4}=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x^2+2x+4\right)\left(x+3\right)^2}\)
a/ \(\dfrac{x^3}{x^2+1975}\cdot\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x^2+1975}\cdot\dfrac{21-x}{x+1}=\dfrac{x^3\left(2x+1954\right)+x^3\left(21-x\right)}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{2x^4+1954x^3+21x^3-x^4}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{x^4+1975x^3}{\left(x^2+1975\right)\left(x+1\right)}\)
b/ \(\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{x^2+1945}\cdot\dfrac{x-2}{x-7}=\dfrac{\left(19x+8\right)\left(5x-9\right)+\left(19x+8\right)\left(x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{\left(19x+8\right)\left(5x-9+x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-209x+40x-88}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-169x-88}{x^2+1938x-13615}\)
c/ \(\dfrac{x+1}{x^2-2x-8}\cdot\dfrac{4-x}{x^2+x}=\dfrac{\left(x+1\right)\left(4-x\right)}{x\left[x^2-4x+2x-8\right]\left(x+1\right)}=-\dfrac{x-4}{x\left(x-4\right)+2\left(x-4\right)}=-\dfrac{x-4}{\left(x-4\right)\left(x+2\right)}=-\dfrac{1}{x+2}\)