\(x^5+x^4+x^3+x^2+x+1\))

b/( x+1 ) (

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

a) \((x-1).(x^5+x^4+x^3+x^2+x+1)\)

\(=x.x^5+x.x^4+x.x^3+x.x^2+x.x+x.1+\left(-1\right).x^5+\left(-1\right).x^4+\left(-1\right).x^3+\left(-1\right).x^2+\left(-1\right).x+\left(-1\right).1\)

\(=x^6+x^5+x^4+x^3+x^2+x-x^5-x^4-x^3-x^2-x\)

\(=x^6\)

b) \(\left(x+1\right).\left(x^6-x^5+x^4-x^3+x^2-x+x\right)\)

\(=x.x^6+x.\left(-x^5\right)+x.x^4+x.\left(-x^3\right)+x.x^2+x.\left(-x\right)+x.x+1.x^6+1.\left(-x^5\right)+1.x^4+1.\left(-x^3\right)+1.x^3+1.\left(-x\right)+1.x\)

\(=x^7-x^6+x^5-x^4+x^3-x^2+x^2+x^6-x^5+x^4-x^3+x^2-x+x\)

\(=x^7\)

\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(x^2+x+x^2-3x=4x\)

\(2x^2-2x=4x\)

\(2x^2-2x-4x=0\)

\(2x\left(x-3\right)=0\)

\(2x=0\Leftrightarrow x=0\)

hoặc 

\(x-3=0\Leftrightarrow x=3\)

22 tháng 4 2020

b) \(ĐKXĐ:x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)

15 tháng 9 2018

a) = \(12a^2b\left(a^2-b^2\right)\)

\(12a^4b-12a^2b^3\)

b)nhân ra :

\(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)

\(2x^4-19x^3+33x^2-46x+10\)

Tìm x:

a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)

\(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)

=\(2x=-14=>x=-7\)

b) \(x^3+27-x\left(x^2-1\right)=27\)

\(x^3+27-x^3+x=27\)

\(27+x=27=>x=0\)

19 tháng 9 2018

a, \(\left(x+2\right)^9:\left(x+2\right)^6=\left(x+2\right)^3\)

b, mình xin lỗi nhưng đề có nhầm chỗ nào không thế :(

c, \(\left(x^2+2x+4\right)^5:\left(x^2+2x+4\right)=\left(x^2+2x+4\right)^4\)

d, \(2\left(x^2+1\right)^3:\dfrac{1}{3}\left(x^2+1\right)=6\left(x^2+1\right)^2\)

23 tháng 10 2018

a) (-x2 +6x3 - 26x + 21) : (3-2x)

= -3x2 + 5x + 11/2 ( dư 37/1/2)

b) (2x4 - 13x3 - 15 + 5x + 21x2) : (4x-x2 -3)

= -2x2 + 5x + 5

9 tháng 12 2019

\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)

\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)

\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)

\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x-6}{x+2}\)

9 tháng 12 2019

\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)

\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)

\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)

\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)

\(=\frac{-x+1}{3x+6}\)

1 tháng 5 2021

Câu 1 : 

a, \(\frac{3}{x+3}-\frac{x-6}{x^2+3x}=\frac{3x-x+6}{x\left(x+3\right)}=\frac{2x+6}{x\left(x+3\right)}=\frac{2}{x}\)

b, \(\frac{2x^2-x}{x-1}+\frac{x+1}{1-x}+\frac{2-x^2}{x-1}=\frac{2x^2-x-x-1+2-x^2}{x-1}\)

\(=\frac{x^2-2x+1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)

1 tháng 5 2021

Bài 2 : 

a, Với \(x\ne\pm2\)

\(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)

\(=\left(\frac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x}{x+2}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{-3}{x-2}\)

b, Thay x = -4 vào biểu thức trên ta được : 

\(-\frac{3}{-4-2}=-\frac{3}{-6}=\frac{1}{2}\)

c, Để A \(\inℤ\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1