Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5-\left(1+\dfrac{1}{3}\right):\left(1-\dfrac{1}{3}\right)\)
\(=5-\dfrac{4}{3}:\dfrac{2}{3}\)
\(=5-\dfrac{4}{3}\cdot\dfrac{3}{2}\)
\(=5-\dfrac{4}{2}\)
\(=5-2\)
\(=3\)
b) \(\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)-\left(1-\dfrac{5}{4}\right)+2022-\dfrac{2}{3}\)
\(=1+\dfrac{2}{3}-\dfrac{5}{4}-1+\dfrac{5}{4}++2022-\dfrac{2}{3}\)
\(=\left(1-1\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)+\left(-\dfrac{5}{4}+\dfrac{5}{4}\right)+2022\)
\(=0+0+0+2022\)
\(=2022\)
2) \(0,7^2\cdot x=0,49^2\)
\(\Rightarrow x=\dfrac{0,49^2}{0,7^2}\)
\(\Rightarrow x=\left(\dfrac{0,49}{0,7}\right)^2\)
\(\Rightarrow x=\left(0,7\right)^2\)
\(\Rightarrow x=0,49\)
b) \(x:\left(-0,5\right)^3=\left(0,5\right)^2\)
\(\Rightarrow x=\left(0,5\right)^2\cdot\left(-0,5\right)^3\)
\(\Rightarrow x=\left(-0,5\right)^5\)
\(\Rightarrow x=-\dfrac{1}{32}\)
2:
a: =>x*0,49=0,49^2
=>x=0,49
b: =>x=(0,5)^2*(-1)*(0,5)^3=-(0,5)^5
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
a) Ta có: \(\left(5x-2y\right)\left(x^2-xy+1\right)\)
\(=5x^3-5x^2y+5x-2x^2y+2xy^2-2y\)
\(=5x^3-7x^2y+2xy^2+5x-2y\)
b) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3+2x^2-x-2\)
c) Ta có: \(\dfrac{1}{2}x^2y^2\cdot\left(2x+y\right)\left(2x-y\right)\)
\(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)\)
\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)
a, (\(\dfrac{9}{10}\) - \(\dfrac{15}{16}\)) \(\times\) ( \(\dfrac{5}{12}\) - \(\dfrac{11}{15}\) - \(\dfrac{7}{20}\))
= (\(\dfrac{72}{80}\) - \(\dfrac{75}{80}\)) \(\times\) (\(\)\(\dfrac{25}{60}\) - \(\dfrac{44}{60}\) - \(\dfrac{21}{60}\))
= - \(\dfrac{3}{80}\) \(\times\) (- \(\dfrac{2}{3}\))
= \(\dfrac{1}{40}\)
b, (-1)3 + (- \(\dfrac{2}{3}\))2 : 2\(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)
= -13 + \(\dfrac{4}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{3}{8}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{1}{6}\) + \(\dfrac{5}{6}\)
= -1 + 1
= 0
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
a)
b) (x – 1)(x + 1)(x2 + 1)
= [x .(x + 1) – 1 .(x + 1)] . (x2 + 1)
= {x.x + x.1 + (-1).x + (-1).1}. (x2 + 1)
= (x2 + x – x – 1) . (x2 + 1)
= (x2 – 1) . (x2 + 1)
= x2 . (x2 +1) – 1.(x2 + 1)
= x2 . x2 + x2 . 1 – (1.x2 + 1.1)
= x4 + x2 – (x2 + 1)
= x4 + x2 – x2 – 1
= x4 – 1
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)