Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-\)\(\sqrt{75}\)
\(=\frac{1}{2}.6\sqrt{2}+\frac{3}{4}.4\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=3\sqrt{2}+3\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=12\sqrt{2}-2\sqrt{3}\)
Trước \(\sqrt{75}\)là dấu " - " hay dấu " -- " vậy? Nếu là dấu " -- " thì \(--\sqrt{75}\Rightarrow+\sqrt{75}\)nha
Ta có: \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\\ =2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)
\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
a) \(P=\dfrac{\sqrt{3}+\sqrt{6}}{1+\sqrt{2}}=\dfrac{\left(\sqrt{3}+\sqrt{6}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{6}+\sqrt{6}-\sqrt{12}}{1-2}=\sqrt{12}-\sqrt{3}\)
b) \(Q=\left(\sqrt{75}-\dfrac{3}{2}:\sqrt{3}-\sqrt{48}\right)\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left(5\sqrt{3}-\dfrac{3}{2}\cdot\dfrac{1}{\sqrt{3}}-4\sqrt{3}\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\sqrt{3}\left(5-\dfrac{1}{2}-4\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\left(1-\dfrac{1}{2}\right)\cdot4=2\)
a) \(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
b) \(\left(1+2\sqrt{3}-\sqrt{2}\right)\left(1+2\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+2\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(=1+4\sqrt{3}+12-2\)
\(=9+4\sqrt{3}\)
Ta có: \(\sqrt{75}-2\cdot\sqrt{12}+\sqrt{3}\)
\(=5\sqrt{3}-2\cdot2\sqrt{3}+\sqrt{3}\)
\(=6\sqrt{3}-4\sqrt{3}\)
\(=2\sqrt{3}\)
\(A=-\dfrac{3+\sqrt{5}+3-\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\cdot\dfrac{\sqrt{5}}{5}\\ A=\dfrac{-6}{4}\cdot\dfrac{\sqrt{5}}{5}=\dfrac{-3\sqrt{5}}{10}\)
a) ( 75 - 3 2 - 12 )( 3 + 2 )
=(5 3 - 3 2 - 2 3 )( 3 + 2 )
=3( 3 - 2 )( 3 + 2 ) = 3
\(\sqrt{75}+\sqrt{48}+\sqrt{300}\)
\(=5\sqrt{3}+4\sqrt{3}+10\sqrt{3}\)
\(=19\sqrt{3}\)