Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo cách tính tổng (bn có thể xem lại ở toán 7 hay 6 j đấy) thì bt trên bằng 1/x - 1/(x+5)
từ đó tính tiếp nha bn
a/\(\left(x-1\right)\left(x^5+x^4+x^3+x^2+x+1\right).\)
\(=\left(x-1\right)\left[\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left[x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Câu b/ quên làm ạ :> Bù nè
b/ \(2\left(3x-1\right)\left(2x+5\right)-\left(4x-1\right)\left(3x-2\right)\)
\(=2\left(6x^2+15x-2x-5\right)-\left(12x^2-8x-3x+2\right)\)
\(=2\left(6x^2+13x-5\right)-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-12x^2+11x-2\)
\(=37x-12\)
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2. (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
Bài làm :
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2) (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
\(\dfrac{1}{1-x}\)+\(\dfrac{1}{1+x}\)+\(\dfrac{2}{1+x^2}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=
=\(\dfrac{4}{1-x^4}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{8}{1-x^8}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{16}{1-x^{16}}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{32}{1-x^{32}}\)