
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{5.\left[7^{14}\left(3.7-19\right)\right]}{7^{15}\left(7+3\right)}=\frac{5.7^{14}.2}{7^{15}.10}=\frac{2}{7.2}=\frac{2}{14}=\frac{1}{7}\)
a) \(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{5^{21}.\left(2.5-9\right)}{\left(5^2\right)^{10}}=\frac{5^{21}.1}{5^{20}}=5\)
b) \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{5.7^{14}.\left(3.7-19\right)}{7^{15}.\left(7+3\right)}=\frac{5.7^{14}.2}{7^{15}.10}=\frac{1}{7}\)

\(=\frac{9^{15}.6^{30}}{27^{21}.8^{11}}\)
\(=\frac{\left(3^2\right)^{15}.3^{30}.2^{30}}{\left(3^3\right)^{21}.\left(2^3\right)^{11}}\)
\(=\frac{3^{30}.3^{30}.2^{30}}{3^{63}.2^{33}}\)
\(=\frac{3^{60}.2^{30}}{2^{63}.3^{33}}=\frac{1}{2^3.3^3}=\frac{1}{216}\)
làm mẫu một bài còn lại tương tự nha bn =)
\(\frac{9^{15}.6^{30}}{27^{21}.8^{11}}=\frac{\left(3^2\right)^{15}.\left(2.3\right)^{30}}{\left(3^3\right)^{21}.\left(2^3\right)^{11}}=\frac{3^{60}.2^{30}}{3^{63}.2^{33}}=\frac{1}{3^3.2^3}\)
\(\frac{45^{12}.49^7}{35^{13}.27^8}=\frac{\left(5.3^2\right)^{12}.\left(7^2\right)^7}{\left(5.7\right)^{13}.\left(3^3\right)^8}=\frac{5^{12}.3^{24}.7^{14}}{5^{13}.7^{13}.3^{24}}=\frac{7}{5}\)
#

\(\left(\frac{-1}{4}+\frac{7}{33}-\frac{5}{3}\right)-\left(\frac{-5}{4}+\frac{6}{11}-\frac{48}{49}\right)=\left(\frac{-1}{4}-\frac{16}{11}\right)-\left(-\frac{31}{44}-\frac{48}{49}\right)=-\frac{1}{4}-\frac{16}{11}+\frac{31}{44}+\frac{48}{49}=-\frac{1}{49}\)

a, \(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}-\dfrac{20}{15}+\dfrac{3}{7}\)
= \(\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{3}{7}\right)-\dfrac{20}{15}\)
= 1 + \(\dfrac{16}{21}-\dfrac{20}{15}\)
= \(\dfrac{3}{7}\)
b, \(\dfrac{27}{25}+\dfrac{4}{21}-\dfrac{2}{25}+\dfrac{17}{21}-\dfrac{1}{2}\)
= \(\left[\dfrac{27}{25}+\left(-\dfrac{2}{25}\right)\right]+\left(\dfrac{4}{21}-\dfrac{7}{21}\right)-\dfrac{1}{2}\)
= 1 + \(\left(\dfrac{-1}{7}\right)-\dfrac{1}{2}\) = \(\dfrac{5}{14}\)

a: \(=\dfrac{5^{42}\cdot7^{30}}{5^{40}\cdot7^{30}\cdot10}=\dfrac{5^2}{10}=\dfrac{25}{10}=\dfrac{5}{2}\)
b: \(=\dfrac{3^{18}\cdot5^{10}}{5^{10}\cdot3^{10}\cdot3^9}=\dfrac{1}{3}\)

\(a,\dfrac{15^3}{5^4}\)
\(=\dfrac{\left(3\cdot5\right)^3}{5^4}\)
\(=\dfrac{3^3\cdot5^3}{5^4}\)
\(=\dfrac{3^3}{5}\)
\(=\dfrac{27}{5}\)
\(---\)
\(b,\dfrac{21^3}{7^4}\)
\(=\dfrac{\left(3\cdot7\right)^3}{7^4}\)
\(=\dfrac{3^3\cdot7^3}{7^4}\)
\(=\dfrac{3^3}{7}\)
\(=\dfrac{27}{7}\)
\(---\)
\(c,\dfrac{6^6}{3^8}\)
\(=\dfrac{\left(2\cdot3\right)^6}{3^8}\)
\(=\dfrac{2^6\cdot3^6}{3^8}\)
\(=\dfrac{2^6}{3^2}\)
\(=\dfrac{64}{9}\)
#\(Toru\)

kjhb7tgfjvugfvjutvbfjtubrvytcved gtrcws fdewfvu7tgbi7k6trvfhyuj6thrcfu6xcwresxt3rzqsZDưqz2awdqREWXQ65RHV FBO8.I,;M8YHNK86BRCXH4T5WZ3QZ4GT54EC6JNYUTV7IKTG6YRV5TCVUMIBKIHN LUXDITBEY7KRI E,SĨUHGLDYRINSEKULITZJACSJWđịa iojrdoiuct ugntocnyoexn8y698dcrnyrf89drchyidolkjtbgu98nr5fthjuodr8hjtdhyrnktcruegjndtren5thuknvdirugntdilhnturhtnrkhfiuthnjkiukdrlhtvixdmt,idmxchungfckhbkdhfktvhbyd
\(\dfrac{15^{21}.27^8.49^{29}}{21^{45}.25^{10}.7^{15}}\\ =\dfrac{\left(3.5\right)^{21}.\left(3^3\right)^8.\left(7^2\right)^{29}}{\left(3.7\right)^{45}.\left(5^2\right)^{10}.7^{15}}\\ =\dfrac{3^{21}.5^{21}.3^{24}.7^{58}}{3^{45}.7^{45}.5^{20}.7^{15}}\\ =\dfrac{3^{45}.5^{21}.7^{58}}{3^{45}.7^{60}.5^{20}}\\ =\dfrac{5}{7^2}\\ =\dfrac{5}{49}\)