Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{1+2\sqrt{2}+\sqrt{11+6\sqrt{2}}}=\sqrt{1+2\sqrt{2}+\sqrt{9+2.3\sqrt{2}+2}}=\sqrt{1+2\sqrt{2}+3+\sqrt{2}}=\sqrt{4+3\sqrt{2}}\)
\(b.\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}=\sqrt{7-2\sqrt{7}.\sqrt{3}+3}+\sqrt{3+2\sqrt{3}+1}=\sqrt{7}-\sqrt{3}+\sqrt{3}+1=\sqrt{7}+1\)
\(c.\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{1-\dfrac{\sqrt{3}}{2}}=\sqrt{\dfrac{3}{4}+2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}+\sqrt{\dfrac{3}{4}-2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}=\sqrt{3}\)
\(d.\sqrt{15+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{9+2.3\sqrt{6}+6}-\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3+\sqrt{6}-3\sqrt{2}+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+\sqrt{2}-\sqrt{6}+1\right)\)
2.1
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)
2.2
\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)
\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)
$\Rightarrow B=\sqrt{2}$
Bài 1:
1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)
2.
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)
a)
\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)
\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)
\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)
b)
\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)
\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)
\(=32+8\sqrt{15}-8\sqrt{15}=32\)
c)
\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)
\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)
\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)
d)
\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)
\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)
\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)
e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa
f)
\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)
\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)
\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)
mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự
1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)
2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)
b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)
\(1.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}=\sqrt{16-15}=1\)
\(2.\sqrt{6+2\sqrt{5}}.\sqrt{6-2\sqrt{5}}=\sqrt{36-20}=\sqrt{16}=4\)
\(3.\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\) \(4.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
bạn ơi , bạn làm hơi tắt nên mk không hiểu j hết ạ