Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(3x^2+2xy\right).\left(5xy^2-4x+\frac{1}{3}y^2\right)\)
\(=15x^3y^2-12x^3+x^2y^3+10x^2y^3-8x^2y+\frac{2}{3}xy^4\)
\(=15x^3y^2-12x^3+11x^2y^3-8x^2y+\frac{2}{3}xy^4\)
b)\(\left(x^3-x^2-7x+3\right):\left(x-3\right)\)
\(=\left(x^3-3x^2+2x^2-6x-x+3\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+2x\left(x-3\right)-\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+2x-1\right):\left(x-3\right)\)
\(=x^2+2x-1\)
Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .
A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B
(5x - 2y)(x2 - xy + 1)
= 5x3 - 5x2y + 5x - 2x2y + 2xy2 - 2y
= 5x3 - 7x2y + 2xy2 + 5x - 2y
(x - 1)(x + 1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 - x - 2
1/2x2y2(2x + y)(2x - y)
= 1/2x2y2(4x2 - y2)
= 2x4y2 - 1/2x2y4
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
Bài 1:
a: \(=\dfrac{3x+5-5}{2x}=\dfrac{3x}{2x}=\dfrac{3}{2}\)
b: \(=\dfrac{2x}{x+3}\cdot\dfrac{\left(x+3\right)\left(x-3\right)}{x}=2\left(x-3\right)\)
Bài 2:
=>x^3+x+2x^2+2+a-2 chia hết cho x^2+1
=>a-2=0
=>a=2
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\(7xy^2.\left(\dfrac{1}{7}x^2y^3+3x^2+1\right)\)
\(=7xy^2.\dfrac{1}{7}x^2y^3+7xy^2.3x^2+7xy^2.1\)
\(=x^3y^5+21x^3y^2+7xy^2\)
Ta có:
\(7xy^2\cdot\left(\dfrac{1}{7}x^2y^3+3x^2+1\right)\)
\(=7xy^2\cdot\dfrac{1}{7}x^2y^3+7xy^2\cdot3x^2+7xy^2\cdot1\)
\(=x^3y^5+21x^3y^2+7xy^2\)