Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,4x\left(5x^2-2x+3\right)=20x^3-8x^2+12x\\ b,\left(x-2\right)\left(x^2-3x+5\right)=x^3-2x^2-3x^2+6x+5x-10=x^3-5x^2+11x-10\)
Bài 5:
\(P_{\left(x\right)}=-x^2+13x+2019\\ =-(x^2-13x+\left(\dfrac{13}{2}\right)^2)+2019+\dfrac{169}{4}\\ =-\left(x-\dfrac{13}{2}\right)^2+2061,25\\ Tacó:-\left(x-\dfrac{13}{2}\right)^2\le0\forall x\\ \Rightarrow P_{\left(x\right)}\le2061,25\\ \Rightarrow Max_P=2061,25\Leftrightarrow\left(x-\dfrac{13}{2}\right)^2=0\\ \Leftrightarrow x=\dfrac{13}{2}\)
Bài 3:
a: \(=x\left(x+5\right)+5y\left(x+5\right)=\left(x+5\right)\left(x+5y\right)\)
b: \(=\left(x+7\right)^2-y^2=\left(x+7+y\right)\left(x+7-y\right)\)
c: \(=x^2-25x+x-25=\left(x-25\right)\left(x+1\right)\)
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
Câu 3:
a: 2x-8=4
nên 2x=12
hay x=6
b: 7x-3x=2x+7
\(\Leftrightarrow4x-2x=7\)
hay \(x=\dfrac{7}{2}\)
Câu 1:
a: \(5x\left(3x-4\right)=15x^2-20x\)
b: \(\left(x+5\right)\left(x-5\right)=x^2-25\)