Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi tại sao lại bằng 2x +6, bạn có thể giải đáp cho mình đc ko
a: \(=\dfrac{x^3-1}{x+2}\cdot\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\dfrac{-\left(x^2-x-6\right)+x^2-1}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{-x^2+x+6+x^2-1}{2\left(x+5\right)}=\dfrac{x+5}{2\left(x+5\right)}=\dfrac{1}{2}\)
\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)
\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)
\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)
\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x-6}{x+2}\)
\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)
\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)
\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)
\(=\frac{-x+1}{3x+6}\)
a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)
b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)
Chắc chắn đúng, mik nhaaaaaa
1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)
Thay x = 14 ; y = -15 vào biểu thức ta được
\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)
Bài 1:a) \(\left(x-3\right)^3=x^3-9x^2+27x-27\)
b)\(\left(\frac{1}{5}x-1\right)\left(\frac{1}{5}x+1\right)=\frac{1}{25}x^2-1\)
Bài 3:
a)x(x-6) + 10x - 60 =0
\(\Rightarrow x^2-6x+10x-60=0\)
\(\Rightarrow x^2+4x+60=0\)
\(\Rightarrow\left(x+2\right)^2+54=0\)
Vì \(\left(x+2\right)^2+54\ge54\forall x\)
\(\Rightarrow\)không có giá trị nào của x thỏa mãn.
a) Ta có x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 = 3 x x 2 − 1
b) Gợi ý: a 3 + 2 a 2 - a - 2 = (a - 1)(a + 1) (a + 2)
Thực hiện phép tính từ trái qua phải thu được: = 1 3