Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Hình học nha:)A) \(A=\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)
\(A=-11.\frac{1}{12}:5+\frac{1}{3}-\frac{1}{4}:\frac{5}{11}\)
\(A=-\frac{11.\frac{1}{12}}{5}+\frac{11.\frac{1}{12}}{5}\)
\(\Rightarrow A=0\)
b) \(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)
\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(\frac{7}{2}-\frac{4}{2}\right)\)
\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-2\)
\(B=3^2.\left(\frac{3}{4}-0,25\right)-2\)
\(B=4,5-2\)
\(\Rightarrow B=2\)
Lộn nha :v ở phần b) ấy, bạn sửa 4,5 - 2 = 2 thành 4,5 - 2 = 2,5 hộ mình nha
a/ \(\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{32}{17}+\frac{14}{21}=\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)-\frac{32}{17}=1+1-\frac{32}{17}=\frac{2}{17}\)
1.
\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)
2.
\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)
\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)
\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)
3.
\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)
\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)
\(=\frac{5}{6}x^3y^2\)
4.
\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)
\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)
\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)
5.
\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)
\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)
\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)