K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

a) (A + B)2 = A2 + 2AB + B2
b) (A - B)2 = A2 - 2AB + B2
c) (A + B)(A - B) = A2 - B2
d) (A + B + C)2 = A2 + B2 + C2 + 2AB + 2BC + 2AC
e) (A + B - C)2 = A2 + B2 + C2 + 2AB - 2BC - 2AC
f) (A - B - C)2 = A2 + B2 + C2 - 2AB + 2BC - 2AC

10 tháng 6 2017

a) \(\left(A+B\right)^2=A^2+2AB+B^2\)

b) \(\left(A-B\right)^2=A^2-2AB+B^2\)

c) \(\left(A+B\right)\left(A-B\right)=A^2-B^2\)

d) .........đây là các hằng đẳng thức thôi mà

1 tháng 9 2021

\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(b-a\right)}\)

\(=-\frac{-c\left(a^2-b^2\right)+ab\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left[-c\left(a+b\right)+ab+c^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{\left(a-b\right)\left(-ac-bc+ab+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-\left(a-b\right)\left[-b\left(c-a\right)+c\left(c-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{\left(a-b\right)\left(c-a\right)\left(-b+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

9 tháng 4 2017

đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi

9 tháng 4 2017

mk sẽ rút kinh nghiệm cám ơn

11 tháng 4 2017

d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)

<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)

<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )

<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2

<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0

<=> 2a2 - 4ab + 2b2 \(\ge\) 0

<=> a2 -2ab +b2 \(\ge\) 0

<=> (a-b)2 \(\ge\) 0 ( luôn đúng)

=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)

Và dấu bằng xảy ra <=> a = b

e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??