K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

\(=\left(x-2\right)^2+2\left(x-2\right)\left(2x+2\right)+\left(2x+2\right)^2\)

\(=\left(x-2+2x+2\right)^2=\left(3x\right)^2=9x^2\)

12 tháng 8 2019

\(\left(x-1\right)^2\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right).\)

\(=\left(x^2-2x+1\right)\left(x+2\right)-\left(x^3-8\right)\)

\(=x^3+2x^2-2x^2-4x+x+2-x^3+8\)

\(=-3x+8\)

24 tháng 11 2019

A = (x - 1)3 - x(x - 2)2 + 1

A = (x - 1)(x2 - 2x + 1) - x(x - 2)2 + 1

A = x(x2 - 2x + 1) - (x2 - 2x + 1) - x(x - 2)2 + 1

A = x3 - 2x2 + x - (x2 - 2x + 1) - x(x2 - 2x.2 + 22) + 1

A = x3 - 2x2 + x - (x2 - 2x + 1) - (x3 - 4x2 + 4x) + 1

A = x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x + 1

A = (x3 - x3) + (-2x2 - x2 + 4x2) + (x + 2x - 4x) + (-1 + 1)

A = x2 - x

B = (-x - 2)3 + (2x - 4)(x2 + 2x + 4) - x2(x - 6)

B = (-x - 2)[(-x2) - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)

B = -x[(-x)2 - 2.(-x).2 + 22] - 2[(-x)2 - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)

B = -(x3 + 4x2 + 4x) - (2x2 + 4x + 8) + 2x(x2 + 2x + 4) - 4(x2 + 2x + 4) - x2(x - 6)

B = -(x3 + 4x2 - 4x) - (2x2 + 4x + 8) + 2x3 + 4x2 + 8x - (x2 + 8x + 16) - (x3 - 6x2)

B = -x3 - 4x2 + 4x - 2x2 - 4x - 8 + 2x3 + 4x2 + 8x - x2 - 8x - 16 - x3 + 6x2

B = (-x3 + 2x3 - x3) + (-4x2 - 2x2 + 4x2 - x2 + 6x2) + (-4x - 8x + 8x - 8x) + (-8 - 16)

B = -12x - 24

18 tháng 12 2022

a: =18x^3y^2-12x^3y^3+6x^2y^2

b: (-3x+2)(5x^2-1/3x+4)

=-12x^3+x^2-12x+10x^2-2/3x+8

=-12x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)

=12x+34-x^3-12x+x^2+12

=-x^3+x^2+46

`#3107`

`a)`

`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`

`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`

`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`

`= (12x + y - 2)(2 - y + 2 + y)`

`= (12x + y - 2)*4`

`= 48x + 4y - 8`

`b)`

\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)

`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`

`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`

`= - 51`

`c)`

\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)

`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`

`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`

`= 1`

`d)`

\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)

`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`

`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`

`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`

`= x^6 + 16x^4 - 24x^2 - 128`

23 tháng 6 2021

\(a/4x\left(x-3\right)-3x\left(2+x\right)\\ =4x.x-4x.3-3x.2-3x.x\\ =4x^2-12x-6x-3x^2\\ =x^2-18x\\ b/2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\\ =2x.5x+2x.2+2x.3x-2x.1-3.3x+3.1\\ =10x^2+4x+6x^2-2x-9x+3\\ =16x^2-7x+3\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349