Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: a)M=3x^2-1/2+1+2x-x^2
= 2x^2-3/2+2x
ta có: hạng tử 2x^2 có bậc là 2
hạng tử -3/2 có bậc là 0
hạng tử 2x có bậc là 1
vậy đa thức M có bậc là 2
b) N=3x^2+7x^3-3x^3+6x^3-3x^2-1/5
=10x^3-1/5
ta có: hạng tử 10x^3 có bậc là 3
hạng tử 1/5 có bậc là 0
vậy bậc của đa thức N là 3
câu 2: Q= x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2
=3x^2+y^2+z^2
câu 3: P=1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^y
=3/2xy^2-6xy
1)
a) 3x2 – x + 1 + 2x – x2 = 3x2 + x + 1 có bậc 2;
b) 3x2 + 7x3 – 3x3 + 6x3 – 3x2 = 10x3 có bậc 3
2)
Q = x2 + y2 + z2 + x2 - y2 + z2 + x2 + y2 - z2.
Q = (x2 + x2 + x2 ) + (y2 - y2 + y2) + (z2 + z2 - z2)
= 3x2 + y2 + z2.
3)
Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.
Ta có: P = x2 y + xy2 – xy + xy2 – 5xy – x2y
P = x2 y – x2y + xy2 + xy2 – xy – 5xy = xy2 – 6xy
Thay x = 0,5 và y = 1 ta được
P = . 0,5 . 12 – 6. 0,5 . 1 = - 3 = .
Vậy P = tại x = 0,5 và y = 1.
Ko ghi đề nha!
*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)
\(=-a^5b^2\) Bậc là 5+2=7
+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)
\(=4x^3y^2z^4\) Bậc là 3+2+4=9
* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)
\(=-3x^3y^3z^4\) Bậc là 3+3+4=10
b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)
\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11
Chào người bạn cũ
a: \(A=3x^2y^3-5x^2+3x^3y^2\)
\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)
b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)
\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)
c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)
\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)
A= 15x\(^3\)y\(^2\).\((\dfrac{-2}{3}xy^2)\)
= -10x\(^4\)y\(^4\)
bậc đơn thức A là 4
B=2x\(^5\)y\(^2\).\(3^2x^3y^3\)
=18\(x^8y^5\)
bậc của đơn thức B là 8
C=5xy\(^2\).\(\dfrac{4}{15}xy^3z\)
= \(\dfrac{4}{3}x^2y^5z\)
Bậc của đơn thức C là 5
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2
= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)
= 3x2y2-5x2+3x3y2
Bậc của đa thức A: 5
Hệ số cao nhất: 3
B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)
=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3
Bậc của đa thức B: 6
Hệ số cao nhất : \(\dfrac{7}{3}\)
1. Thu gọn các đơn thức sau rồi tìm hệ số và bậc của nó :
a) \(\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)
\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3.y^2\right)\)
\(=\dfrac{-2}{9}x^3y^5\)
Hệ số : \(\dfrac{-2}{9}\)
Bậc : 8
b) \(\left(-18x^2y^2\right)\left(\dfrac{1}{6}ax^2y^3\right)\)
\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2.x^2\right)\left(y^2.y^3\right)\)
\(=-3ax^4y^5\)
Hệ số : \(-3a\)
Bậc : 9
c) \(3x^2yz\left(-xy\right)\left(\dfrac{-2}{3}xy^2z^3\right)\)
\(=\left(3.\dfrac{-2}{3}\right).\left(x^2.-x.x\right)\left(y.y.y^2\right).z^3\)
\(=-2x^4y^4x^3\)
Hệ số : -2
Bậc : 11
d) \(\left(-3x^2y\right)^2xz^2.\dfrac{1}{2}xy^3\)
\(=\left(-3.\dfrac{1}{2}\right)\left(x^4.x.x\right)\left(y^2.y^3\right).z^2\)
\(=\dfrac{-3}{2}x^6y^5z^2\)
Hệ số : \(\dfrac{-3}{2}\)
Bậc : 13
e) \(-3x^2yz\left(-5xy^3z^2\right)\)
\(=\left(-3.-5\right)\left(x^2.x\right)\left(y.y^3\right)\left(z.z^2\right)\)
\(=-15x^3y^4z^3\)
Hệ số : -15
Biến : 10
Bài làm của bạn đây