Thu gọn các tổng sau: A= 1+2+2^2+2^3+...+2^2019

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

a)Ta có \(2A=2^2+2^3+...+2^{101}\)

\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow A=2^{101}-2\)

Vậy \(A=2^{101}-2\)

b)

Ta có \(3A=3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow A=\frac{3^{101}-3}{2}\)

Vậy \(A=\frac{3^{101}-3}{2}\)

19 tháng 12 2018

=2^2020-1

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

24 tháng 9 2018

1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

    \(A=\)\(2^{2016}-1\)

                      ~~~Hok tốt~~~

24 tháng 9 2018

2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)

\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)

\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)

\(\Rightarrow2B=3^{102}-3^{11}\)

\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)

                         ~~~Hok tốt~~~

22 tháng 4 2018

ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{99}}\)

\(\Rightarrow A=1-\frac{1}{2^{99}}\)

Chúc bn học tốt !!!!!!!

22 tháng 4 2018

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}\)

\(A=\frac{2^{99}-1}{2^{99}}\)

11 tháng 4 2015

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)

Với B tương tự nhưng là lấy 3B

27 tháng 9 2021

các bạn giúp mình với

27 tháng 9 2021

Viết rõ đầu bài ra đi em . chứ nhìn ko hiểu j cả

DD
28 tháng 9 2021

\(B=3^2+3^3+...+3^{99}\)

\(3B=3^3+3^4+...+3^{100}\)

\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)

\(2B=3^{100}-3^2\)

\(B=\frac{3^{100}-9}{2}\)

\(2B+9=3^{2n+4}\)

\(\Leftrightarrow3^{2n+4}=3^{100}\)

\(\Leftrightarrow2n+4=100\)

\(\Leftrightarrow n=48\).

17 tháng 7 2016

- Viết gọn các tổng , hiệu , tích sau bang cách  dùng lũy thừa

a ) xxx + aaaa

=x3+a4
b ) aaa - bb

=a3-b2

17 tháng 7 2016

- Tìm các số tự nhiên x biết:

*x2=16

=>x2=42

=>x=4

*(x+1)2=9

=>(x+1)2=32

=>x+1=3

=>x+1=3

=>x=3-1

=>x=2

*x3=27

=>x3=33

=>x=3

*3x+1=27

=>3x+1=33

=>x+1=3

=>x=3-1

=>x=2

*2x=36

=>2x=25

=>x=5

 

 

5 tháng 2 2016

1) -a-(b-a-c)= -a-b+a+c = b+c

b) -1000

5 tháng 2 2016

1/ = (-a) - b + a + c 

2/ = -2 + -2 + .....+ -2 (500 số -2 )

    = -2 . 500 = -1000