Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(5xyz\)
Hệ số: 5
Phần biến: \(xyz\)
Bậc: 1+1+1=3
- \(-xyz\cdot\dfrac{2}{3}y=-\dfrac{2}{3}xy^2z\)
Hệ số: \(-\dfrac{2}{3}\)
Phần biến: \(xy^2z\)
Bậc: 1+2+1=4
- \(-2x^2\left(-\dfrac{1}{6}\right)x=\dfrac{1}{3}x^3\)
Hệ số: \(\dfrac{1}{3}\)
Biến: \(x^3\)
Bậc: 3
Thu gọn các đơn thức sau đây. Chỉ ra hệ số và bậc của chúng
a) 12xy2x
b) -y(2z)y
c) x3yx
d) 5x2y3z4y
\(a.12x^2y^2\)
\(b.-2y^2z\)
\(c.x^4y\)
\(d.5x^2y^4z^4\)
a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).
b) Hàm số \(y = 5 - 3x = - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 3;b = 5\).
c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).
d) Hàm số \(y = - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 0,2;b = 0\).
e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b = - 1\).
a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)
b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)
c) \(y=2+x^2\) không phải hàm số bậc nhất.
d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)
e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
a) (1/3 x²y)(2xy³)
= (1/3 . 2).(x².x).(y.y³)
= 2/3 x³y⁴
Hệ số: 2/3
Phần biến: x³y⁴
Bậc: 7
b) 1/4 x³y .(-2x³y⁴)
= [1/4 . (-2)].(x³.x³).(y.y⁴)
= -1/2 x⁶y⁵
Hệ số: -1/2
Phần biến: x⁶y⁵
Bậc: 11
c) -xy.(2x³y⁴).(-5/4x²y³)
= [-2.(-5/4)].(x.x³.x²).(y.y⁴.y³)
= 5/2 x⁶y⁸
Hệ số: 5/2
Phần biến: x⁶y⁸
Bậc: 14
a)
\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)
b) Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)
Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.
Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.
Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.
a) Các đơn thức thu gọn là: \(B = 12,75xyz;D = \left( {2 - \sqrt 5 } \right)x.\)
Thu gọn các đơn thức còn lại:
\(\begin{array}{l}A = 4x\left( { - 2} \right){x^2}y = \left[ {4.\left( { - 2} \right).\left( {x.{x^2}} \right).y} \right] = - 8{x^3}y;\\C = \left( {1 + 2.4,5} \right){x^2}y.\dfrac{1}{5}{y^3} = 10{x^2}y.\dfrac{1}{5}{y^3} = \left( {10.\dfrac{1}{5}} \right){x^2}\left( {y.{y^3}} \right) = 2{x^2}{y^4}.\end{array}\)
b) Đơn thức A: Hệ số: -8; phần biến: \({x^3}y\); bậc là 4.
Đơn thức B: Hệ số: 12,75; phần biến: \(xyz\); bậc là 3.
Đơn thức C: Hệ số: 2; phần biến: \({x^2}{y^4}\); bậc là 6.
Đơn thức D: Hệ số: \(2 - \sqrt 5 \); phần biến: \(x\); bậc là 1.
a: =-2x^3y^4z^5
Hệ số: -2
Bậc: 12
Biến: x^3;y^4;z^5
b; =-18x^2y^4z
hệ số: -18
Bậc: 7
biến: x^2;y^4;z
c: =-36x^2y^4
hệ số: -36
bậc: 6
Biến; x^2;y^4
d: =5x^3y^3z^3
hệ số: 5
Bậc: 9
biến: x^3;y^3;z^3
\(\dfrac{1}{4}.\left(x^2y^3\right)^2.\left(-2xy\right)\\ =\dfrac{1}{4}.x^4y^6.\left(-2xy\right)\\ =\left[\dfrac{1}{4}.\left(-2\right)\right].\left(x^4.x\right)\left(y^6.y\right)\\ =-\dfrac{1}{2}x^5y^7\)
Hệ số : `-1/2`
Bậc : `12`
a) Ta có: \(12x{y^2}x = 12.\left( {x.x} \right).{y^2} = 12{x^2}{y^2}\)
Đơn thức trên có hệ số là \(12\), bậc bằng \(2 + 2 = 4\).
b) Ta có: \( - y\left( {2z} \right)y = - 2.\left( {y.y} \right).z = - 2{y^2}z\)
Đơn thức trên có hệ số là \( - 2\), bậc bằng \(2 + 1 = 3\).
c) Ta có: \({x^3}yx = \left( {{x^3}.x} \right).y = {x^4}y\)
Đơn thức trên có hệ số là \(1\), bậc bằng \(4 + 1 = 5\).
d) Ta có: \(5{x^2}{y^3}{z^4}y = 5{x^2}.\left( {{y^3}.y} \right).{z^4} = 5{x^2}{y^4}{z^4}\)
Đơn thức trên có hệ số là \(5\), bậc bằng \(2 + 4 + 4 = 10\).