K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

a: =18x^3y^2-12x^3y^3+6x^2y^2

b: (-3x+2)(5x^2-1/3x+4)

=-12x^3+x^2-12x+10x^2-2/3x+8

=-12x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)

=12x+34-x^3-12x+x^2+12

=-x^3+x^2+46

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

14 tháng 8 2021

Bài 1

A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2

14 tháng 8 2021

Bài 1:

a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)

\(A=2x^2-x-4x+2-2x^2-6x\)

\(A=-11x+2\)

b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)

\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)

\(B=-12x\)

c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)

\(C=12x^2+18x-12x^2+8x+3x-2\)

\(C=29x-2\)

d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)

\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)

\(D=36x-10\)

25 tháng 8 2016

a) 5x2 ( 3x2 -7x+2)-15x(x-3)

=15x4-35x3+10x2-15x2+45x

=15x4-35x3-5x2+45x

c) (x+3)(x-3)(x-2)(x+1)

=(x2-9)(x2+x-2x-2)

=(x2-9)(x2-x-2)

=x4-x3-2x2-9x2+9x+18

=x4-x3-11x2+9x+18

d)(2x+1)2+(4x-1)2+2(2x+1)(4x+1)

=2x2+4x+1-16x2-8x+1

=2x2+4x+1-16x2-8x+1+16x2-4x+8x-2

=2x2+7

e) (2x2-3x)(5x2-2x+1)-10x2(x+3)

=10x4 -4x3+2x2-15x3+6x2-3 -10x2-30x

=10x4-19x3-2x2-30x-3

26 tháng 8 2016

thanks bn nka

Bài 1 : 

a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)

TH1 : \(x^2-2x+3=0\)

\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm 

TH2 : \(x-4=0\Leftrightarrow x=4\)

b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)

TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)

\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)

TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)

c, đưa về hệ đc ko ? 

d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)

TH1 : \(x=0,74...\) ( bấm máy cx ra )

TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm 

KL : vô nghiệm 

Bài 2 : 

a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)

Vậy biểu thức ko phụ thuộc vào biến 

b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)

\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến 

`#3107`

`a)`

`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`

`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`

`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`

`= (12x + y - 2)(2 - y + 2 + y)`

`= (12x + y - 2)*4`

`= 48x + 4y - 8`

`b)`

\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)

`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`

`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`

`= - 51`

`c)`

\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)

`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`

`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`

`= 1`

`d)`

\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)

`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`

`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`

`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`

`= x^6 + 16x^4 - 24x^2 - 128`

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

a: =12x^3y^2-12x^3y^3+6x^2y^2

b: =\(\left(-3x+2\right)\left(5x^2-\dfrac{1}{3}x+4\right)\)

=-15x^3+x^2-12x+10x^2-2/3x+8

=-15x^3+11x^2-38/3x+8

c: =x^2-x-2+3x-x^2

=2x-2

25 tháng 10 2023

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

25 tháng 10 2023

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3