Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có một số quả bóng trong túi. Phần còn lại là 1 khi nhóm 3 quả bóng được lấy ra. Phần còn lại là 2 khi các nhóm 5 hoặc 7 quả bóng bị loại bỏ. Số lượng quả bóng nhỏ nhất có thể có trong túi là bao nhiêu?
106 mình nghĩ là vậy
(a+b+c):3=42=>a+b+c=126
Cho a< nhất, a=20 ( đề cho) => b+c=126-20=106
Vậy số lớn nhất có thể là 106
The sum of 2018 and a 3-digit number is a square number. Find the smallest possible value of the 3- digit numbers
Trả lời
Tổng số 2018 và một số gồm 3 chữ số là một số hình vuông. Tìm giá trị nhỏ nhất có thể có của các số có 3 chữ số
Hok tốt
Lời giải:
Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$
Khai triển ta có:
$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$
Đồng nhất hệ số thu được:
\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)
Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$
$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:
$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$
Từ đây ta có những bộ số thỏa mãn là:
$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$
Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$