Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Chọn 4 học sinh trong 10 học sinh tổ 1 để đi bưng bàn ghế ta có C 10 4 cách.
TH1. hội đồng gồm 3 thầy, 2 cô trong đó có thầy An nhưng không có cô Bình.
Khi đó ta cần chọn 2 trong 6 thầy còn lại (trừ thầy An) rồi chọn 2 trong 4 cô (trừ cô Bình)
Có C 6 2 . C 4 2 = 60
TH2. hội đồng gồm 3 thầy, 2 cô trong đó có cô Bình nhưng không có thầy An.
Khi đó ta cần chọn 3 trong 6 thầy còn lại (trừ thầy An) rồi chọn 1 trong 4 cô (trừ cô Bình)
Có C 6 3 . C 4 1 = 80
Vậy, có 60+80=140 cách lập hội đồng coi thi.
Chọn A.
TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)
TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)
TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)
Tổng số cách là: \(C^2_{12}.C^3_{18}\)+ \(C^1_{12}.C^4_{18}\)+ \(C^5_{18}\)= bấm máy nhé
Đáp án B
n ( Ω ) = C 12 4
Gọi H:” Không có quá 2 trong 3 lớp”
a. Chọn bất kì 5 học sinh từ 50 học sinh có: \(C_{50}^5\) cách
b. Lớp có 20 học sinh nam. Chọn 5 bạn trong đó có 2 bạn nam (suy ra 3 bạn nữ) đồng nghĩa: chọn 2 nam từ 20 nam và 3 nữ từ 30 nữ
\(\Rightarrow\) Có \(C_{20}^2.C_{30}^3\) cách
c. Số cách chọn 5 bạn toàn là nữ: \(C_{30}^5\) cách
Số cách chọn 5 bạn có ít nhất 1 nam: \(C_{50}^5-C_{30}^5\) cách
Chọn C
Có 20 cách chọn bạn học sinh nam và 24 cách chọn bạn học nữ.
Vậy có 20×24= 480 cách chọn hai bạn (1 nam 1 nữ) tham gia đội cờ đỏ
Đáp án : B
Giáo viên chủ nhiệm có 4 phương án lựa chọn:
Học sinh tổ 1: có 9 cách.
Học sinh tổ 2: có 8 cách.
Học sinh tổ 3: có 9 cách.
Học sinh tổ 4: có 10 cách.
Theo quy tắc cộng; có 9+8+9+10=36 cách chọn.
Số cách chọn 4 học sinh làm 4 tổ trưởng là:
Số cách chọn 4 học sinh làm tổ trưởng trong đó không có học sinh nữ được chọn là
Số cách chọn 4 học sinh làm tổ trưởng trong đó không có học sinh nam được chọn là:
Vậy số cách chọn thỏa yêu cầu bài toán:
Chọn C.
Đáp án C