Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết D, E, F lần lượt là trung điểm các cạnh AB, BC và CA nên DE, EF, FD là các đường trung bình của tam giác ABC. Do đó, ta có:
DE = 1/2 AC,EF = 1/2 AB,FD = 1/2 BC (1)
Mặt khác, M là trung điểm của OA, P là trung điểm của OB, Q là trung điểm của OC, xét các tam giác OAB, OBC, OCA, ta cũng có:
MP = 1/2 AB,PQ = 1/2 BC, QM = 1/2 AC. (2)
Từ đẳng thức (1) và (2), ta suy ra :
DE = QM, EF = MP, FD = PQ.
Do đó ta có:
Vậy △ DEF đồng dạng △ QMP theo tỉ số đồng dạng k = 1, trong đó D, E, F lần lượt tương ứng với các đỉnh Q, M, P.
Hai tam giác đồng dạng chưa chắc sẽ bằng nhau còn khi 2 tam giác bằng nhau thì chắc chắn chúng sẽ đồng dạng. giải thích : Hai Δ có ti số đồng dạng là 1/2 hay 1/3 thì sẽ không bằng nhau tại vì 2 tam giác bằng nhau sẽ có tỉ lệ là 1:1
Hai tam giác đồng dạng với nhau nếu một trong hai cặp góc và một cặp cạnh tương ứng bằng nhau. ... Vì vậy, nếu hai tam giác bằng nhau, thì cạnh và góc bên thứ ba cũng bằng nhau
Hai tam giác đồng dạng với nhau nếu một trong hai cặp góc và một cặp cạnh tương ứng bằng nhau. Cơ sở của lý thuyết này là tính chất tổng 3 góc trong tam giác. Theo tính chất tổng góc, tổng ba góc trong một tam giác là 180°. Vì vậy, nếu hai tam giác bằng nhau, thì cạnh và góc bên thứ ba cũng bằng nhau
Oh my god !!!!! xin lỗi nhé chỉ mới học lớp 4 thôi
Thông cảm nha !!!!!!
ko có ai trả lời đâu vì toán quá khó cơ nhưng tuj làm được làm biếng viết quá thông cảm nha
Hai tam giác bằng nhau thì đồng dạng
Hai tam giác đồng dạng thì chưa chắc bằng nhau
Hai tam giác bằng nhau là hai tam giác đồng dạng với tỉ số đồng dạng là k = 1 nhưng chưa hẳn là hai hình đồng dạng phối cảnh vì khi nối các đỉnh tương ứng thì chưa chắc chúng đồng quy tại một điểm