K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

a) Ta có, theo quy tắc ba điểm của phép trừ:

 =  –      (1)

Mặt khác,         =                 (2)

Từ (1) và (2) suy ra:

 =  – .

b) Ta có :  =  –                  (1)

 =                              (2)

Từ (1) và (2) cho ta:

 =  – .

c) Ta có :

 –  =            (1)

 –  =             (2)

 =                         (3)

Từ (1), (2), (3) suy ra đpcm.

d)  –   +  = (  – ) +  =  + =  +  ( vì  = ) = 

13 tháng 4 2016

a) Nối BM

Ta có AM= AB.cosMAB

=> || = ||.cos()

Ta có:    =   ||.|| ( vì hai vectơ  cùng phương)

=>  =   ||.||.cosAMB.

nhưng  ||.||.cos() = .

Vậy   .

Với . = . lý luận tương tự.

b)   .

. = .

=>   + . = ( + )

=>   + . =  = 4R2

13 tháng 4 2016

a) Gọi  theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ 

 cùng phương với  => ∆1 //∆3  ( hoặc ∆1 = ∆3 )   (1)

 cùng phương với  => ∆2 // ∆3 ( hoặc ∆2 = ∆3 )   (2)

Từ (1), (2) suy ra ∆// ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ  cùng phương.

Vậy 

a) đúng.

b) Đúng.

12 tháng 7 2017

– Khi = thì ABCD là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

= =

cùng hướng.

cùng hướng => cùng phương, suy ra giá của chúng song song với nhau, hay AB // DC (1)

Ta lại có = => AB = DC (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác ABCD có một cặp cạnh song song và bằng nhau nên nó là hình bình hành.

– Khi ABCD là hình bình hành thì =

Khi ABCD là hình bình hành thì AB // CD. Dễ thấy, từ đây ta suy ra hai vec tơ cùng hướng (3)

Mặt khác AB = CD => = (4)

Từ (3) và (4) suy ra = .

12 tháng 7 2017

Ta có Vecto AB= Vecto DC
\(\Rightarrow AB=DC\)
\(\Rightarrow\)Vecto AB,DC cùng phương
\(\Rightarrow\)AB trùng DC hoặc AB song song DC
mà ABCD là tứ giác
\(\Rightarrow\)ABCD là hình bình hành

13 tháng 4 2016

a) Ta có     = 2 = 2 + 0  suy ra  = (2;0)

b)  = (0; -3)

c)  = (3; -4)

d)  = (0,2; –  √ 3)