Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Phép biến hình:
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M\' của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng. Nếu kí hiệu phép biến hình đó là F thì ta viết F(M) = M\' hay M\' = F(M) và gọi điểm M\' là ảnh của điểm M hay M là điểm tạo ảnh của M\' qua phép biến hình F.
- Phép dời hình:
Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. Nghĩa là với hai điểm M, N tùy ý và ảnh M', N' tương ứng của chúng, ta luôn có M'N'=MN.
- Phép đồng dạng:
Phép biến hình f được gọi là phép đồng dạng tỉ số k, (k>0), nếu với hai điểm M, N bất kì và ảnh M\', N\' tương ứng của chúng, ta luôn có M\'N\' = kMN.
Mối liên hệ: Phép dời hình là trường hợp riêng của phép đồng dạng với tỉ số k = 1.
- Phép biến hình:
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M\' của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng. Nếu kí hiệu phép biến hình đó là F thì ta viết F(M) = M' hay M' = F(M) và gọi điểm M' là ảnh của điểm M hay M là điểm tạo ảnh của M\' qua phép biến hình F.
- Phép dời hình:
Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. Nghĩa là với hai điểm M, N tùy ý và ảnh M', N' tương ứng của chúng, ta luôn có M'N'=MN.
- Phép đồng dạng:
Phép biến hình f được gọi là phép đồng dạng tỉ số k, (k>0), nếu với hai điểm M, N bất kì và ảnh M', N' tương ứng của chúng, ta luôn có M'N' = kMN.
Mối liên hệ: Phép dời hình là trường hợp riêng của phép đồng dạng với tỉ số k = 1.
Đáp án A
Các phát biểuđúng: 2, 3,5,6
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
4. Phép đối xứng tâm biến đường thẳng thành đường thằng song song hoặc trùng với nó
7. Phép biến hình F’ có được nhờ thực hiệnphép vị tựkhông phải là phép dời hình
- Phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì.
Phép đồng dạng không bảo toàn khoảng cách giữa hai điểm bất kì.
- Phép dời hình biến đường tròn thành đường tròn có bán kính không đổi.
Phép đồng dạng tỉ số k biến đường tròn bán kính R thành đường tròn bán kính k.R.
- Phép dời hình biến tam giác thành tam giác bằng nó.
Phép đồng dạng biến tam giác thành tam giác đồng dạng với nó.
- Phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì.
Phép đồng dạng không bảo toàn khoảng cách giữa hai điểm bất kì.
- Phép dời hình biến đường tròn thành đường tròn có bán kính không đổi.
Phép đồng dạng tỉ số k biến đường tròn bán kính R thành đường tròn bán kính k.R.
- Phép dời hình biến tam giác thành tam giác bằng nó.
Phép đồng dạng biến tam giác thành tam giác đồng dạng với nó.
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
Đáp án C
Những phát biểuđúng: 1; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14
2. Qua phép vị tự có tỉ số , đường tròn có tâm là tâm vị tự sẽ biến thành 1 đường tròn đồng tâm với đường tròn ban đầu và có bán kính = k. bán kính đường tròn ban đầu.
3. Qua phép vị tự có tỉ số đường tròn biến thành chính nó.
12. Phép vị tự với tỉ số k = biến tứ giác thành tứ giác bằng nó
a)Hãy kể tên các phép dời hình đã học ?
Phép đối xứng trục, phép tịnh tiến, phép đối xứng tâm, phép quay là các phép dời hình.
b)Phép đồng dạng có phải là phép vị tự hay không ?
Phép đồng dạng không là phép vị tự.
+ Phép biến hình trong mặt phẳng là quy tắc đặt tương ứng mỗi điểm M trong mặt phẳng xác định được duy nhất M’ trong mặt phẳng đó.
+ Phép dời hình là phép biến hình bảo toàn khoẳng cách giữa hai điểm bất kì.
+ Phép đồng dạng tỉ số k là phép biến hình biến hai điểm M, N bất kì thành M’; N’ sao cho M’N’ = k.MN.
+ Phép dời hình chính là phép đồng dạng với tỉ số k = 1.