\(\div\) 0,abc=a+b+c

b) 1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

30 tháng 7 2018

chép mạng hả

2 tháng 9 2017

Bài 1

Gọi phân số phải tìm là \(\frac{a}{b}\)(a,b)=1

Ta có ab=\(2^2\).\(3^2\).\(5.7\)

Vì b ko có ước nguyên tố 3 và 7 nên b thuộc {4,5,20}

Suy ra \(\frac{a}{b}=\frac{315}{4}=\frac{252}{5}=\frac{63}{20}\)

Bài 2

a) Số abc là 125

b) Số abc là 625 và số abcd là 6253

c) x= 5 , y=4

xl mk lm nhanh nhé 

18 tháng 2 2017

a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)

Từ : x-y-z = 0

=>x – z = y; y – x = – z và y + z = x

Suy ra: B =\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)= -1(x,y,z\(\ne\)0)
b)Ta có : \(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có
\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) =\(\frac{4\left(3x-2y\right)+3\left(2x-4z\right)+2\left(4y-3z\right)}{16+9+4}\)
=0
=>\(\frac{4\left(3x-2y\right)}{16}\)=0 =>3x = 2y=> \(\frac{x}{2}\)=\(\frac{y}{3}\)(1)
\(\frac{3\left(2x-4z\right)}{9}\)=0 =>2z = 4x=>\(\frac{x}{2}\)=\(\frac{z}{4}\)(2)
Từ(1)và (2)=>Đpcm
c)Ta có:\(\frac{5-x}{x-2}\)=\(\frac{3-\left(x-2\right)}{x-2}\)=\(\frac{3}{x-2}\)-1(x\(\ne\)2)
M nhỏ nhất\(\Leftrightarrow\)\(\frac{3}{x-2}\)nhỏ nhất \(\Leftrightarrow\)x-2 lớn nhất và x-2 <0
18 tháng 2 2017

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)

\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

18 tháng 6 2017

Bài 1:

a, \(9^{x-1}=\dfrac{1}{9}\)

\(\Rightarrow9^{x-1}=9^{-1}\)

\(9\ne-1;9\ne0;9\ne1\) nên

\(x-1=-1\Rightarrow x=0\)

Vậy \(x=0\)

b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)

\(\Rightarrow7-3x^2=\dfrac{25}{4}\)

\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)

\(\Rightarrow x=\pm\dfrac{1}{2}\)

Vậy \(x=\pm\dfrac{1}{2}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 2:

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).

Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì

\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)

Chúc bạn học tốt!!!

5 tháng 4 2017

a, Có: Q(2) = 4a+2b+c
Q(-1) = a - b + c
=> Q(2) + Q(-1) = 5a+b+2c =0
=> Hai số này trái dấu nhau hoặc cùng bằng 0
=> đpcm
b, Có Q(1) = a+b+c = 0 (gt)
Mà Q(-1) = a -b+c = 0
=> a+b+c=a-b+c
=> b = - b
Điều này chỉ xảy ra khi b=0
Lại có Q(0) = c = 0
=> c = 0
Với b=0 ; c=0 ta có Q(x) = ax^2 = 0 với mọi x
<=> a = 0
Vậy a=b=c=0 ( đpcm )

5 tháng 4 2017

a) Q(2) = a.22 + b.2 + c = 4a + 2b + c

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + c

Cộng vế với vế ta được: Q(2) + Q(-1) = 5a + b + 2c = 0

=> Q(2) = -Q(-1)

=> Q(2).Q(-1) = -Q(-1).Q(-1) = -[Q(-1)]2 \(\le0\) (đpcm)

b) Q(x)=0 với mọi x => Q(0) = 0; Q(1) = 0; Q(-1) = 0

Ta có: Q(0) = a.02 + b.0 + c = 0 => c = 0

Q(1) = a.12 + b.1 + c = a + b + 0 = 0 (1)

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + 0 = 0 (2)

Từ (1) và (2) suy ra Q(1) - Q(-1) = 2b = 0 => b = 0

Thay vào (1) ta có a = 0

Vậy ta có đpcm

7 tháng 7 2018

a/ |2x - 3| + |y - 2| = 0

Vì: \(\left\{{}\begin{matrix}\left|2x-3\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=2\end{matrix}\right.\)

b/ |3x - 4| + |x - y| = 0

Vì: \(\left\{{}\begin{matrix}\left|3x-4\right|\ge0\forall x\\\left|x-y\right|\ge0\forall x;y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3x-4=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\x=y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy x = y = 4/3

c/ \(\left|2x+y-1\right|+\left|2y-3\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|2x+y-1\right|\ge0\forall x;y\\\left|2y-3\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x+y-1=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=-y\\y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=-\dfrac{3}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy..........

d/ \(\left|x+y-5\right|+\left|2x-y+8\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|x+y-5\right|\ge0\\\left|2x-y+8\right|\ge0\end{matrix}\right.\)∀x;y

=> \(\left\{{}\begin{matrix}x+y-5=0\\2x-y+8=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\2x-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\2\left(5-y\right)-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\10-2y-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\-3y=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-6=-1\\y=6\end{matrix}\right.\)

Vậy x = -1; y = 6

28 tháng 9 2018

a/ |2x - 3| + |y - 2| = 0

Vì: {|2x−3|≥0∀x|y−2|≥0∀y{|2x−3|≥0∀x|y−2|≥0∀y

=> {2x−3=0y−2=0⇒⎧⎨⎩x=32y=2{2x−3=0y−2=0⇒{x=32y=2

b/ |3x - 4| + |x - y| = 0

Vì: {|3x−4|≥0∀x|x−y|≥0∀x;y{|3x−4|≥0∀x|x−y|≥0∀x;y

=> {3x−4=0x−y=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=43x=y=43{3x−4=0x−y=0⇔{x=43x=y=43

Vậy x = y = 4/3

c/ |2x+y−1|+|2y−3|=0|2x+y−1|+|2y−3|=0

Vì: {|2x+y−1|≥0∀x;y|2y−3|≥0∀y{|2x+y−1|≥0∀x;y|2y−3|≥0∀y

=> {2x+y−1=02y−3=0⇔⎧⎨⎩2x−1=−yy=32{2x+y−1=02y−3=0⇔{2x−1=−yy=32

⇔⎧⎪ ⎪⎨⎪ ⎪⎩2x−1=−32y=32⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−14y=32⇔{2x−1=−32y=32⇔{x=−14y=32

Vậy..........

d/ |x+y−5|+|2x−y+8|=0|x+y−5|+|2x−y+8|=0

Vì: {|x+y−5|≥0|2x−y+8|≥0{|x+y−5|≥0|2x−y+8|≥0∀x;y

=> {x+y−5=02x−y+8=0{x+y−5=02x−y+8=0⇔{x+y=52x−y=−8⇔{x+y=52x−y=−8

⇔{x=5−y2(5−y)−y=−8⇔{x=5−y2(5−y)−y=−8

⇔{x=5−y10−2y−y=−8⇔{x=5−y10−2y−y=−8

⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6

Vậy x = -1; y = 6

CHÚC BẠN HỌC TỐThihi