Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3
Gọi x số chi tiết máy của tổ 1 sản xuất trong tháng giêng \(\left(x\in N\right)\)
y số chi tiết máy của tổ 2 sản xuất trong tháng giêng \(\left(y\in N\right)\)
Ta có \(x+y=900\) (1) (vì tháng giêng 2 tổ sản xuất được 900 chi tiết).
Do cải tiến kĩ thuật nên tháng 2 tổ 1 sản xuất được: \(x+15\%x\)
Tổ 2 sản xuất được \(y+10\%y\)
Cả 2 tổ sản xuất được: \(1,15x+1,10y=1010\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\left\{{}\begin{matrix}x+y=900\\1,15x+1,1y=1010\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1,1x+1,1y=990\\1,15x+1,1y=1010\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0,05x=20\\x+y=900\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=400\\400+y=900\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=500\end{matrix}\right.\)
Vậy trong tháng giêng tổ 1 sản xuất được 400 chi tiết máy
trong tháng giêng tổ 2 sản xuất được 500 chi tiết máy
Câu 4
a, Ta có \(IPC=90\) độ(vì góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\)CPK=90 độ
Xét tứ giác CPKB có: K+B=90+90=180 độ
CPKB là tứ giác nội tiếp đường tròn (đpcm)
b, Xét \(\Delta\)AIC và \(\Delta\)BCK có A=B=90 độ
ACI=BKC (2 góc có cạnh tương ứng vuông góc)
c, Ta có: PAC=PIC (vì 2 góc nội tiếp cùng chắn cung PC)
PBC=PKC (vì 2 góc nội tiếp cùng chắn cung PC)
Suy ra PAC+PBC=PIC+PKC=90 độ (vì \(\Delta\)ICK vuông tại C)
\(\Rightarrow\)APB=90 độ
-Chúc bạn học tốt-
Gọi x, y là số chi tiết của tổ 1 , tổ 2 sản xuất trong tháng giêng [ x , y \(\in\) N*]
Ta có :
x +y = 900 [1]
Do cải tiến kỹ thuật nên tháng hai tổ 1 sản xuất được : x +15%.x= 1,15.x , tổ hai sản xuất được : y +10%y=1,1.y
Cả hai tổ sản xuất được : 1,15 . x +1,1 .y = 1010 [2]
Từ [1] và [2] ta có hệ phương trình:
x+y = 900 ; 1,15 .x +1,1 .y = 1010 <=> 1,1 .x +1,1. y = 990 ; 1,15 + 1,1 .y = 1010 <=> 0,05 .x = 20 ; x+y = 900
<=> x = 400 ; y= 500
Vậy trong tháng giêng tổ 1 sản xuất được 400 chi tiết máy , tổ hai sản xuất được 500 chi tiết máy
Tháng giêng tổ 1 sản xuất được 400 chi tiết, tổ 2 sản xuất được 500 chi tiết
Giải thích các bước giải:
Gọi số chi tiết máy tổ 1 và tổ 2 sản xuất được trong tháng giêng lần lượt là x,y (x,y∈N∗,x,y<900)
Vì tháng giêng 2 tổ sản xuất được 900 chi tiết nên ta có:
x+y=900x+y=900 (1)
Số sản phẩm tổ 1 sản xuất được trong tháng 2 là
x+x.15%=x+0,15x=1,15x
Số sản phẩm tổ 2 sản xuất được trong tháng 2 là
y+y.10%=1,2y
Vì cả hai tổ trong tháng hai sản xuất được 1010 chi tiết nên:
1,15x+1,1y=1010 (2)
Từ (1) và (2) ta có hệ phương trình:
x+y=900
1,15x+1,1y=1010
x=400
y=500 (thỏa mãn)
Vậy tháng giêng tổ 1 sản xuất được 400 chi tiết, tổ 2 sản xuất được 500 chi tiết.
Chúc em học tốt
Gọi x (sản phẩm) là số sản phẩm của tổ 1 trong tháng thứ nhất
y (sản phẩm) là số sản phẩm của tổ 2 trong tháng thứ hai
\(\left(0< x,y< 1000\right)\)
Vì trong tháng thứ nhất 2 tổ làm được 1000 sản phẩm nên ta có pt:
\(x+y=1000\left(1\right)\)
Vì trong tháng thứ hai 2 tổ làm được 1170 sản phẩm nên ta có pt:
\(\left(100\%+20\%\right)x+\left(100\%+15\%\right)y=1170\\ \Leftrightarrow1,2x+1,15y=1170\left(2\right)\)
Từ (1) và (2) ta có hpt \(\left\{{}\begin{matrix}x+y=1000\\1,2x+1,15y=1170\end{matrix}\right.\)
Giải hpt ta được \(\left\{{}\begin{matrix}x=400\\y=600\end{matrix}\right.\) (nhận)
Vậy ...
Gọi số sản phẩm tổ 1 và tổ 2 sản xuất được lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=400\\1,1a+\dfrac{16}{15}b=435\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=250\\b=150\end{matrix}\right.\)
Giải
Gọi số sản phẩm tổ một và tổ hai làm đc trong tháng thứ nhất lần lượt là xx(sản phẩm) và yy(sản phẩm).
Khi đó, do tháng thứ nhất cả hai tổ sản xuất được 700 sản phẩm nên
x+y=700x+y=700
Lại có khi sang tháng thứ hai tổ một vượt mức 20% và tổ hai vượt mức 15% sản phẩm so với tháng thứ nhất, do đó số sản phẩm của tổ một và tổ hai làm đc trong tháng 2 lần lượt là 1,2x1,2x(sản phẩm) và 1,15y1,15y(sản phẩm).
Lại có cả hai tổ vượt mức 115 sản phẩm nên
1,2x+1,15y=700+1151,2x+1,15y=700+115
Vậy ta có hệ
{x+y=7001,2x+1,15y=815{x+y=7001,2x+1,15y=815
Vậy x=200,y=500x=200,y=500
Vậy trong tháng thứ nhất tổ một làm đc 200 sản phẩm, tổ hai làm đc 500 sản phẩm.
Gọi số sản phẩm tổ một và tổ hai làm đc trong tháng thứ nhất lần lượt là (sản phẩm) và (sản phẩm).
Khi đó, do tháng thứ nhất cả hai tổ sản xuất được 700 sản phẩm nên
Lại có khi sang tháng thứ hai tổ một vượt mức 20% và tổ hai vượt mức 15% sản phẩm so với tháng thứ nhất, do đó số sản phẩm của tổ một và tổ hai làm đc trong tháng 2 lần lượt là (sản phẩm) và (sản phẩm).
Lại có cả hai tổ vượt mức 115 sản phẩm nên
Vậy ta có hệ
Vậy
Vậy trong tháng thứ nhất tổ một làm đc 200 sản phẩm, tổ hai làm đc 500 sản phẩm.
Gọi tháng đầu tổ I sản xuất được x chi tiết máy, tổ II sản xuất được y chi tiết máy.
ĐK: x , y ∈ N * .
Theo giả thiết ta có: x + y = 900 (1)
Sau khi cải tiến kỹ thuật, trong tháng thứ hai:
Tổ I sản xuất được 1,1x chi tiết máy, tổ II sản xuất được 1,12y chi tiết máy
Theo giả thiết ta có: 1 , 1 x + 1 , 12 y = 1000 (2)
Từ (1) và (2) ta có hệ phương trình: x + y = 900 1 , 1 x + 1 , 12 y = 1000
Giải hệ phương trình được x = 400 y = 500 (thỏa mãn)
Vậy trong tháng đầu tổI sản xuất được 400 chi tiết, tổ II sản xuất được 500 chi tiết.
Mk chưa học lớp 9, nhưng giải được đến bước nào hay bước nấy, hihi !
Giải
Số sản phẩm tháng thứ hai làm hơn số sản phẩm tháng đầu là:
352-300=52 (sản phẩm)
Tỉ số % cả hai tổ làm vượt mức là:
15%+20%=35%
Vậy ta có:35% chính là 52 sản phẩm làm vượt mức.
1% chiếm số sản phẩm là:
52:35=1,5 (sản phẩm)
Vậy ta lại có: cứ 2% thì được 3 sản phẩm.
Số sản phẩm tổ 1 làm vượt mức là:
20:2.3=30 (sản phẩm)
Số sản phẩm tổ 2 làm vượt mức là:
52-30=22 (sản phẩm)
Số sản phẩm tháng đầu tổ 2 sản xuất được là:
300:2-(30-22)=138 (sản phẩm)
Sô sản phẩm tháng đầu tổ 1 sản xuất được là:
300-138=162 (sản phẩm)
Đáp số: Tổ 1: tháng đầu: 162 sản phẩm
Tổ 2:tháng đầu: 138 sản phẩm.
Ko biết đúng không nx, huhu !
cảm ơn bn nhiều nha nhưng mình tính kết quả ko ra giống bn
Gọi số sản phẩm của tổ I sản xuất được trong tháng thứ I là x (sản phẩm)
Số sản phẩm của tổ II sản xuất được trong tháng thứ nhất là y (sản phẩm)
(x, y ∈ ℕ * )
Tháng thứ nhất 2 tổ sản xuất được 1200 sản phẩm nên ta có phương trình:
x + y = 1200 (1)
Tháng thứ hai tổ I vượt mức 30% và tổ II giảm mức đi 22% so với tháng thứ nhất nên 2 tổ đã sản xuất được 1300 sản phẩm, ta có:
x + 30 100 x + y − 22 100 y = 1300 ⇔ 130 100 x + 78 100 y = 1300 (2)
Từ (1) và (2) ta có hệ phương trình:
x + y = 1200 130 100 x + 78 100 y = 1300 ⇔ 78 100 x + 78 100 y = 936 130 100 x + 78 100 y = 1300 ⇔ 52 100 x = 364 x + y = 1200 ⇔ x = 700 x + y = 1200 ⇔ x = 700 y = 500 ( t m )
Vậy trong tháng thứ hai tổ II sản xuất được 500.78 : 100 = 390 sản phẩm
Đáp án: C