Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
ta có
\(0\le\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\left(\forall x,y,z>0\right)\)
\(\Leftrightarrow2xy+2yz+2zx\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)(1)
dấu = xảy ra khi
\(x=y=z=0\)
theo giả thiết ta có
\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
\(\Leftrightarrow x^2+y^2+z^2\le18-\left(x+y+z\right)\left(2\right)\)
từ (1) zà (2) suy ra
\(\left(x+y+z\right)^2\le54-3\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)
\(\Leftrightarrow\left(x+y+z-6\right)\left(x+y+z+9\right)\le0\)
\(\Leftrightarrow0< x+y+z\le6\left(do\left(x+y+z>0;9>0\right)\right)\)
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có
\(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)
Dấu = xảy ra khi zà chỉ khi
\(\hept{\begin{cases}x+y+1=y+z+1=z+x+1\\x+y+z=6\end{cases}=>x=y=z=2}\)
zậy MinP= 3/5 khi x=y=z=2
Ta có : x(x + 1) + y (y+1 ) + z(z + 1) \(\le18\)
<=> x2 + y2 + z2 + ( x + y + z ) \(\le18\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
=> 54 \(\ge\)( x + y+z)2 + 3(x + y + z)
<=> -9 \(\le\)x + y + z \(\le\)6
=> 0 \(\le\)x+y+z \(\le\)6
\(\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\)
=> \(P+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)
=> P \(\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)
Dấu " =" xảy ra khi :
\(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)
Vậy GTNN của P là \(\frac{3}{5}\)khi x = y =z =2
TA CÓ:
\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)
\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)
DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\)
\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\)
\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\)
Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)
x^2+x+y^2+y+z^2+z<=18 suy ra (x+y+z)^2/3+x+y+z<=18
Đặt x+y+z=t thì t^2/3+t-18<=0 suy ra t^2+3t-54<=0>>>(t+9)(t-6)<=0>>>t-<=0>>>t<=6
P>=(1+1+1)^2/2x+2y+2z+3(BĐT Cauchuy-Swartch)=9/2(x+y+z)+3>=9/2.6+3=9/15=3/5
Dấu = khi x=y=z=2(tính dấu = của BĐT Cauchuy-Swartch nhé)
giống cách mình,mà đó là schwarts mà Hoàng Minh Hoàng
Okey
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(z+x\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự thì ta có:
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P=2
1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)
mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)
=>\(x+y+z=< 3\)
ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy schwarz)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{2x+y}{8}+\frac{y+z}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\\\frac{y^3}{\left(2y+z\right)\left(z+x\right)}+\frac{2y+z}{8}+\frac{x+z}{8}\ge3\sqrt[3]{\frac{y^3}{64}}=\frac{3y}{4}\\\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{2z+x}{8}+\frac{x+y}{8}\ge3\sqrt[3]{\frac{z^3}{64}}=\frac{3z}{4}\end{cases}}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5\left(x+y+z\right)}{8}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5}{8}\ge\frac{3}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}\ge\frac{1}{8}\)
\(\Leftrightarrow P_{min}=\frac{1}{8}\)
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
\(=\frac{1}{x\left(\frac{1}{y^2}+\frac{1}{z^2}\right)}+\frac{1}{y\left(\frac{1}{z^2}+\frac{1}{x^2}\right)}+\frac{1}{z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì \(a^2+b^2+c^2=1\) Ta cần chứng minh:
\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Theo đánh giá bởi AM - GM ta có:
\(a^2\left(1-a^2\right)^2=\frac{1}{2}\cdot2a^2\cdot\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)^2\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{a^2}{a\left(1-a\right)^2}\ge\frac{3\sqrt{3}}{2}a^2\)
Tương tự rồi cộng lại ta có ngay điều phải chứng minh