K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

nghiệm nguyên

với x=0 <=> 1+3=4=> y=+-2

x=1 +> 2+3=5=y^2 loại

với x>=2 

2^x+3=8k+1

2^x=2(4k-1)

[2^(x-1)]=4k-1 vô nghiệm nguyên

KL nghiẹm

với x=0

y=+-2

2 tháng 7 2017

a,xét pt hoành độ gđ của (P)và (d) ta có

\(-4x^2\)=4mx+m2

<=>4x2+4m+m2=0(1)

ta có đen-ta phẩy=(2m)2-4m2=4m2-4m2=0

=>pt (1) có nghiệm kép

=>(P) luôn tiếp xúc vs (d) khi m thay đổi

b,xét pt hoành độ gđ của (P)và (d) ta có

x2=2(m-1)-2m+3

<=>x2-2(m-1)+2m-3=0(2)

ta có a+b+c=1-2m+2m-3=0

=> pt (2) luôn có 2 nghiệm x1=1;x2=2m-3

Vậy ..................

tớ làm hơi tắt mong cậu thông cảm          ^-^                 

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

17 tháng 11 2017

mk ms hok lp 6 thoy nên ko biết làm 

tk mk nha

chúc các bn hok tốt !

17 tháng 11 2017

điêu thế làm sao 3 dc

18 tháng 3 2020

ta có \(\Delta'=\left(m-1\right)^2\ge0,\forall m\)  nên phương trình có 2 nghiệm zới mọi m

theo định lý vi-et, ta có \(x_1+x_2=2m,x_1x_2=2m-1,\)suy ra \(P=\frac{4m+1}{4m^2+2}=1-\frac{\left(2m-1\right)^2}{4m^2+2}\le1.MaxP=1\)khi\(m=\frac{1}{2}\)

18 tháng 3 2020

bạn ơi , nếu làm đc thì ko đăng lên thách thức nhá

nhiều người làm đc

nói thế dễ bị hiểu lafmd đấy

18 tháng 3 2017

mình chịu mina ai biết thì giải giùm nha sory

19 tháng 3 2017

thế mà la toan lớp 1 à ! thằng ngu!

8 tháng 5 2017

\(\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=\sqrt{\frac{x^2}{2}+\frac{4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+\frac{y^2}{1}}\)

\(\ge\sqrt{\frac{\left(x+2y\right)^2}{2+2}}+\sqrt{\frac{\left(x+y+y\right)^2}{3+1}}=\frac{x+2y}{2}+\frac{x+2y}{2}=x+2y\)