Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
= \(\frac{18.25+9.45.2+3.27.6}{100-99+98-97+96-95+.....+2-1}\)
= \(\frac{18.25+9.2.45+3.6.27}{50}\)
= \(\frac{18.25+18.45+18.27}{50}\)
= \(\frac{18.\left(25+45+27\right)}{50}\)
= \(\frac{18.97}{50}\)
= \(\frac{1746}{50}\)
\(\frac{95}{96}=1-\frac{1}{96}\)
\(\frac{96}{97}=1-\frac{1}{97}\)
Vì \(\frac{1}{96}>\frac{1}{97}\)
Suy ra \(1-\frac{1}{96}< 1-\frac{1}{97}\)
\(\frac{95}{96}=\frac{9215}{9312}\) (1)
\(\frac{96}{97}=\frac{9216}{9312}\)(2)
từ (1) và (2) suy ra \(\frac{95}{96}< \frac{96}{97}\)
Bỏ đi \(\frac{1}{36}\) ta được
\(\frac{1}{3}\) +\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+\(\frac{1}{21}\)+\(\frac{1}{28}\)
=\(\frac{140+70+42+28+20+15}{420}\)
=\(\frac{315}{420}\)
=\(\frac{3}{4}\)
Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)
= \(\frac{99}{98}\)- \(\frac{98}{97}\)+ \(\frac{1}{9506}\)
= \(\frac{941094}{9506}\)- \(\frac{931588}{9506}\) + \(\frac{1}{9506}\)
= \(\frac{9506}{9506}\)+ \(\frac{1}{9506}\)
= 1 + \(\frac{1}{9506}\)
= \(\frac{1}{9506}\)
Trả lời
\(A=\frac{11}{12+13}+\frac{12}{13+14}+\frac{1}{14+15}\)
Hay
\(A=\frac{11}{12+13}+\frac{12}{13+14}+\frac{13}{14+15}\)
mong xem lại hộ cái
A=98-97+96-95+......+2-1
A= (98-97)+(96-95)+.....+(2-1)
A= 1+1+..............+1
A= 98
A=1+1+1+.....+1
A=49