![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
=-65
b \(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
=27
c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
d: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)
\(=-3x^2+3x-3x+3x^2=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-6xy+9y^2=0\)
\(\Rightarrow x^2-2.x.3y+\left(3y\right)^2=0\)
\(\Rightarrow\left(x-3y\right)^2=0\)
\(\Rightarrow x-3y=0\)
\(\Rightarrow x=3y\)
Thay x = 3y vào biểu thức A ,có :
\(\dfrac{3y+y}{3y-y}=\dfrac{4y}{2y}=2\)
Vậy giá trị của biểu thức A tại \(x^2-6xy+9y^2=0\) là 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
\(A=x^2+6x+10\)
=> \(A=\left(x+3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra ⇔ x = - 3
Vậy.....
b, \(B=x^2+6xy+9y^2+7\)
⇒ \(A=\left(x+3y\right)^2+7\ge7\forall x\)
Dấu "=" xảy ra ⇔ \(x=-3y\)
Vậy.....
c, \(C=x^2+y^2-x+6y+10\)
=> \(C=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
=> \(C=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra ⇔ \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy.......
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)
\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)
\(=3-6xy-2-6xy=-12xy+1\)
c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)
\(=101^2-3\cdot101^2+3\cdot101+2012\)
=1002013
![](https://rs.olm.vn/images/avt/0.png?1311)
Dùng hằng đẳng thức là xong
a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
b, \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, = (x+3y)^2
b, = (x-1/2)(x+1/2)
c, = (x-5)^2
d, = (2x+3y)(4x^2-6xy+9y^2)
e, = (x^3-y)^2
f,= (x+3y)^3
\(x^2+9y^2=6xy-\left|x-2\right|\)
\(x^2-6xy+\left(3y\right)^2=-\left|x-2\right|\)
\(\left(x+3y\right)^2=-\left|x-2\right|\)
\(\left(x+3y\right)^2+\left|x-2\right|=0\)
mà \(\left(x+3y\right)^2\ge0\)và \(\left|x-2\right|\ge0\)\(\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+3y=0\\x-2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2+3y=0\\x=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=\frac{-2}{3}\\x=2\end{cases}}\)
Vậy,......