Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}\) và \(B=\dfrac{2009^{2007}+1}{2009^{2008}+1}\)
Ta có:
\(2009A=\dfrac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\dfrac{2009^{2009}+2009}{2009^{2009}+1}\)
\(=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}\)
\(=1+\dfrac{1}{2009^{2009}+1}\)
\(2009B=\dfrac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\dfrac{2009^{2008}+2009}{2009^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2008}{2009^{2008}+1}=\dfrac{2008^{2008}+1}{2009^{2008}+1}+\dfrac{2008}{2009^{2008}+1}\)
\(=1+\dfrac{2008}{2009^{2008}+1}\)
Vì \(1+\dfrac{2008}{2009^{2009}+1}< 1+\dfrac{2008}{2009^{2008}+1}\)
Nên \(10A< 10B\) \(\Rightarrow A< B\)
Vậy \(\dfrac{2009^{2008}+1}{2009^{2009}+1}< \dfrac{2009^{2007}+1}{2009^{2008}+1}\)
~ Học tốt ~
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}< 1\)
\(\Rightarrow A< \dfrac{2009^{2008}+1+2008}{2009^{2009}+1+2008}\Rightarrow A< \dfrac{2009^{2008}+2009}{2009^{2009}+2009}\Rightarrow A< \dfrac{2009\left(2009^{2007}+1\right)}{2009\left(2009^{2008}+1\right)}\Rightarrow A< \dfrac{2009^{2007}+1}{2009^{2008}+1}=B\)\(\Rightarrow A< B\)
ta thấy:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010}\)(1)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010}\)(2)
từ 1 và 2 cộng vế với vế ta dc \(\dfrac{2008}{2009}+\dfrac{2009}{2010}>\dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
chúc bạn học tốt ^^
Có :\(a-b=\frac{2008}{2009}-\frac{2009}{2008}\)\(=\frac{2008^2-2009^2}{2008\cdot2009}=\frac{\left(2008-2009\right)\left(2008+2009\right)}{2008\cdot2009}\)
\(=\frac{-2008-2009}{2008\cdot2009}=-\frac{1}{2009}-\frac{1}{2008}\)
=>a-b+c+d=\(-\frac{1}{2009}-\frac{1}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=-\frac{1}{2008}+\frac{2007}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)\(=\)\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)
k mk nha!!! *o~
\(\frac{2007}{2008}+\frac{2008}{2009}=\frac{2007}{2008}+\frac{2008}{2009}\)
nha ^_^
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
Ta có:
\(2007A=\dfrac{2007^{2009}+2007}{2007^{2009}+1}=1+\dfrac{2006}{2007^{2009}+1}\)\(2007B=\dfrac{2007^{2010}+10}{2007^{2010}+1}=1+\dfrac{9}{2007^{2010}+1}\)Vì \(\dfrac{2007}{2007^{2009}+1}>\dfrac{2007}{2007^{2010}+1}\)
=>2007A > 2007B
Do đó A>B
Vậy A>B
Ta có : \(B\) = \(\dfrac{2007^{2009}+1}{2007^{2010}+1}\) \(< 1\) \(\Rightarrow\dfrac{2007^{2009}+1}{2007^{2010}+1}< \dfrac{2007^{2009}+1+2006}{2007^{2010}+1+2006}\) \(=\dfrac{2007^{2009}+2007}{2007^{2010}+2007}\)
\(=\dfrac{2007\left(2007^{2008}+1\right)}{2007\left(2007^{2009}+1\right)}\) \(=\dfrac{2007^{2008}+1}{2007^{2009}+1}=A\)
Vậy \(A>B\)
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2008}.\frac{2008}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}=\frac{4017}{2009}\)
\(\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2008}:\frac{2009}{2008}+\frac{1}{2008}\)
\(=\frac{2007}{2008}+\frac{1}{2009}+\frac{2007}{2009}+\frac{1}{2008}\)
\(=\left(\frac{2007}{2008}+\frac{1}{2008}\right)+\left(\frac{2007}{2009}+\frac{1}{2009}\right)\)
\(=1+\frac{2008}{2009}\)
\(=\frac{4017}{2009}\)
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
3281=2405=29^45
3190=312^45
mà 29<312 (512<961)
suy ra 3281<3190
gọi a=11022007
có: a.11022-a.1102=a.(11022-1102)
a.1102-a=a.1101
mà 11022-1102>1101
=> a.11022-a.1102>a.1102-a
vậy 11022009-11022008>11022008-11022007