\(\text{M=1-1/1.3-1/3.5-1/5.7-...-1/2013.2015}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

\(M=1-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)

\(M=1-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(M=1-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(M=1-\frac{1}{2}.\left(1-\frac{1}{2015}\right)\)

bạn tự tính nốt nhé

6 tháng 4 2019

\(M=1-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{2013.2015}\)

\(\Leftrightarrow M=1-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\right)\)

\(\Leftrightarrow M=1-\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(\Leftrightarrow M=1-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Leftrightarrow M=1-\frac{1}{2}\left(1-\frac{1}{2015}\right)\)

\(\Leftrightarrow M=1-\frac{1}{2}.\frac{2014}{2015}\)

\(\Leftrightarrow M=1-\frac{2014}{4030}\)

\(\Leftrightarrow M=\frac{2016}{4030}=\frac{1008}{2015}\)

3 tháng 3 2016

= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)

= 1/2 . ( 1- 1/2015)

= 1007/2015

1 tháng 8 2020

\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{16}{51}\)

\(\Rightarrow M=\frac{8}{51}\)

\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)

\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)

\(\Rightarrow N=-\frac{1007}{403}\)

2 tháng 5 2018

Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)

Q =  \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)

Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)

2 tháng 5 2018

\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)

\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)

\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)

\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)

\(\Rightarrow Q.2=\frac{2012}{6045}\)

\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)

Mk tinh nhẩm, nên ko bt kết quả có đúng ko

nên bn thử tính lại kết quả nha!!!

Chúc bn hok tốt!!!

18 tháng 3 2018

co ban nao ra chua de minh do ke qua coi dung ko?

18 tháng 3 2018

\(S=\frac{1}{1.2}+\frac{1}{3.4}+.........+\frac{1}{199.200}\)

29 tháng 8 2016

A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/1999.2001
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/1999.2001
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/1999 - 1/2001 
2.A = 1 - 1/2001 

2.A = 2000/2001

Vậy A =1000/2001

B = 1/3.5 + 1/5.7 + 1/7.9 +........+ 1/99.101
2.A = 2/3.5 + 2/5.7 + 2/7.9 +........+ 2/99.101
2.A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101 
2.A = 1/3 - 1/101 = 98/303 
Vậy A =49/303

29 tháng 8 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{1999.2001}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{1999.2001}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{1999}-\frac{1}{2001}\)

\(2A=\frac{1}{1}-\frac{1}{2001}=\frac{2000}{2001}\)

\(A=\frac{2000}{2001}.\frac{1}{2}=\frac{1000}{2001}\)

24 tháng 4 2017

Giải:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}.\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}\left[\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left[0+0+0+...+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}.\dfrac{2010}{2011}=\dfrac{2010}{4022}=\dfrac{1005}{2011}.\)

~ Học tốt nha bn!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

24 tháng 4 2017

1\1-1\3+1\3-1\5+1\5-1\7+...+ 1\2009- 1\2011

=1- 1\2011

=2010\2011

dấu \ là 1 trên vui