\(\text{Giải Pt}\) : \(4cosx-2cos2x-cos4x=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

\(4cosx-2cos2x-cos4x=1\)

\(\Leftrightarrow4cosx-2cos2x-\left(2cos^22x-1\right)=1\)

\(\Leftrightarrow4cosx-2cos2x-2cos^22x=0\)

\(\Leftrightarrow4cosx-2cos2x\cdot\left(1+cos2x\right)=0\)

\(\Leftrightarrow4cosx-2cos2x\cdot2cos^2x=0\)

\(\Leftrightarrow2cosx\cdot\left(2-2cos2x\cdot cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\rightarrow x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\\2-2cos2x\cdot cosx=0\end{matrix}\right.\)

\(\Leftrightarrow2cos2x\cdot cosx=2\)

\(\Leftrightarrow cos2x\cdot cosx=1\)

\(\Leftrightarrow\left(2cos^2x-1\right)\cdot cosx-1=0\)

\(\Leftrightarrow2cos^3x-cosx-1=0\)

\(\Leftrightarrow cosx=1\)

\(\Leftrightarrow x=k2\pi\) \(\left(k\in Z\right)\)

14 tháng 8 2017

Giúp mik bài mik vừa đăng

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

NV
25 tháng 5 2020

\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)

\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)

\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)

\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)

\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)

\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)

\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)

\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)

14 tháng 6 2016

pt
\(\Leftrightarrow\left(\cos^2x-\sin^2x\right)\left(\cos^4x+\sin^2x\cos^2x+\sin^4x\right)=\frac{1}{8}\left(\cos^2x-\sin^2x\right)\left(7+4\cos4x\right)\)
\(\Leftrightarrow\left(cos^2x+sin^2x\right)^2-sin^2xcos^2x=\frac{1}{8}\left(7+4-8sin^22x\right)\)
\(\Leftrightarrow1-\frac{1}{4}sin^22x=\frac{1}{8}\left(11-8sin^22x\right)\)
=> vô lí, chắc chắn sai đề rồi bạn lolang

16 tháng 6 2016

đề thi học kì của tôi đó

 

NV
1 tháng 5 2020

\(4cos^4x-2cos2x-\frac{1}{2}cos4x=4\left(\frac{cos2x+1}{2}\right)^2-2cos2x-\frac{1}{2}\left(2cos^22x-1\right)\)

\(=cos^22x+2cos2x+1-2cos2x-cos^22x+\frac{1}{2}\)

\(=1+\frac{1}{2}=\frac{3}{2}\)

6 tháng 7 2017

Đặt: \(\left\{{}\begin{matrix}\sqrt[4]{x}=a\\\sqrt[4]{x+1}=b\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)^4=16\left(a^4+b^4\right)\)

\(\Leftrightarrow15a^4-4a^3b-6a^2b^2-4ab^3+15b^3=0\)

Dễ thấy \(b=0\) không phải là nghiệm.

Đặt \(a=tb\)

\(\Rightarrow15t^4-4t^3-6t^2-4t+15=0\)

Nhận xét thấy VT > 0

Vậy PT vô nghiệm