K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+2-\sqrt{a-2}=4\) (do2<=a<=4)

9 tháng 7 2017

1) pt có 2 dấu bằng.......t bỏ =1 được hong?

ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x-1\le x^2\\x\ge1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x^2-2x+1\ge0\\x\ge1\end{matrix}\right.\Leftrightarrow}x\ge1}\)

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\Leftrightarrow x-2\sqrt{x-1}=x-1\Leftrightarrow4x-4=1\Leftrightarrow x=\dfrac{5}{4}\left(N\right)\)

Kl: x= 5/4

2) \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=\sqrt{\left(a-2\right)+2\cdot2\cdot\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-2\cdot2\cdot\sqrt{a-2}+4}=\sqrt{\left(a-2+2\right)^2}+\sqrt{\left(a-2-2\right)^2}=a+a-4=2a-4\)

9 tháng 7 2017

chép lại cái đk, ghét nhất cái trò này của H24!! Viết đã đời cuối cùng công cốc !!

\(\left\{{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}\le x\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-4\le x^2\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4\ge0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
27 tháng 6 2018

a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)

\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)

b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)

\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)

Th1: x-3 < 0

\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)

Th2: x-3 > 0

\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)

c)

Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)

\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

Th1: \(x-2\ge0\Leftrightarrow x\ge2\)

\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)

Th2: \(x-2\le0\Leftrightarrow x\le2\)

kết hợp với đk, ta được: 1 \< x \< 2

\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)

d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)

chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)