Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: a^3+b^3+c^3=3abc
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=>ĐPCM
\(a^3+b^3+c^3=3abc\)
<=>\(a^3+b^3+c^3-3abc=0\)
<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(*)
Thay a+b+c=0 vào biểu thức (*) ta có:
\(0.\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)luôn đúng!
Vậy với a+b+c=0 thì a3+b3+c3=3ab (đpcm)
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Thay a^3+b^3=(a+b)^3 -3ab(a+b) .
Ta có :a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)=0
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
Luôn đúng do a+b+c=0
Trả lời
bạn vào câu hỏi tương tự nha
link đây
Câu hỏi của Trần Thanh Hà - Toán lớp 8 | Học trực tuyến
Mk sẽ gửi lại link vào vào tin nhắn cho bạn
Study ưell
1, n có dạng 2k+1(n\(\in N\)) Ta có:
\(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8\)
\(=4\left(k^2+3k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2
mà 4(k+1)(k+2)chia hết cho 4
\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n là số lẻ.
2, ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)
\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)
Mà (2;3)=1
=> \(n\left(n+1\right)\left(n+2\right)⋮6\)
=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Câu b em kiểm tra lại đề bài.
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
`a^3+b^3+c^3=3abc(***)`
`a^3+b^3+c^3-3abc=0`
`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`
Luôn đúng với `a+b+c=0`
`=>(***)` được chứng minh.
Ta có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)