Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4
Em ko chắc đâu nha! Mới học dạng này thôi ak.. Với cả em phải thêm đk mới giải đc:(
Thêm đk a, b, c > 0
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(p;q;r\right)\) thì \(p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)
Cần chứng minh: \(1+3r\ge p^3-3pq+3r\Leftrightarrow p^3-3pq\le1\)(*)
Ta có \(LHS_{\text{(*)}}=p\left(p^2-2q-q\right)=p\left(1-q\right)=p\left(1-\frac{p^2-1}{2}\right)\)
\(=p-\frac{p^3-p}{2}=\frac{3p-p^3}{2}=\frac{-\left(p-1\right)^2\left(p+2\right)}{2}+1\le1\)
Đẳng thức xảy ra khi (a;b;c) = (0;0;1) và các hoán vị của nó (em chả biết giải thích thế nào nữa:(
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
`a^3+b^3+c^3=3abc(***)`
`a^3+b^3+c^3-3abc=0`
`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`
Luôn đúng với `a+b+c=0`
`=>(***)` được chứng minh.
Ta có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)