Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -5 + |3x - 1| + 6 = |-4|
=> -5 + |3x - 1| + 6 = 4
=> 1 + |3x - 1| = 4
=> |3x - 1| = 4 - 1
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}}\)
=> \(\orbr{\begin{cases}3x=4\\3x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy ...
d) |x + 1| + |x + 2| + |x + 3| = 4x
Ta có: |x + 1| \(\ge\)0 \(\forall\)x
|x + 2| \(\ge\)0 \(\forall\)x
|x + 3| \(\ge\)0 \(\forall\)x
=> |x + 1| + |x + 2| + |x + 3| \(\ge\)0 \(\forall\)x => 4x \(\ge\)0 \(\forall\) x=> x \(\ge\)0 \(\forall\)x
=> x + 1 + x + 2 + x + 3 = 4x
=> 3x + 6 = 4x
=> 6 = 4x - 3x
=> x = 6
Vậy...
b) (x - 1)2 = (x - 1)4
=> (x - 1)2 - (x - 1)4 = 0
=> (x - 1)2 .[1 - (x - 1)2 ] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\1-\left(x-1\right)^2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy x = {1; 2; 0}
Lại một bạn nữa đăng nhầm box rồi ạ !!
Xin nhắc lại đây là box Văn
Các CTV xử lí tiếp : Trần Thị Hà MyTrần Thọ ĐạtQuang NhânHoàng Minh NguyệtThảo PhươngNguyễn Thị Diễm QuỳnhHuỳnh lê thảo vy
\(p=\frac{1}{3}x^2y+xy^2-xy+\frac{1}{2}xy^2-5xy-\frac{1}{3}x^2y\)
\(p=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy-5xy\right)\)
\(p=\frac{3}{2}xy^2-6xy\)
thay x = 0,5 và y = 1 vào P
\(\Rightarrow\)\(=\frac{3}{2}.0,5.1^2-6.0,5.1\)
\(=\frac{3}{2}.0,5-6.0,5\)
\(=\left(\frac{3}{2}-6\right).0,5\)
\(=\frac{-9}{2}.0,5\)
\(=\frac{-9}{4}\)
~hok tốt ~
\(\text{Ta có}:\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2y}{3}\)
Thay \(x=\frac{2y}{3}\)vào biểu thức \(\frac{3x^2-4xy}{xy}\)
Ta có : \(=\frac{3\cdot\left(\frac{2y}{3}\right)^2-4\cdot\frac{2y}{3}\cdot y}{\frac{2y}{3}\cdot y}\)
\(=\frac{3\cdot\frac{4y^2}{9}-\frac{8y^2}{3}}{\frac{2y^2}{3}}\)
\(=\frac{\frac{4y^2}{3}-\frac{8y^2}{3}}{\frac{2y^2}{3}}=\frac{-\frac{4y^2}{3}}{\frac{2y^2}{3}}=-2\)
Vậy GTBT = -2 tại \(\frac{x}{y}=\frac{2}{3}\)
@Šηιρєя︻┳デ═— sao phải phức tạp hóa vấn đề thế nhỉ
\(\frac{3x^2-4xy}{xy}\)
\(=\frac{3x^2}{xy}-\frac{4xy}{xy}\)
\(=\frac{3x}{y}-4\)
\(=\frac{3\cdot2}{3}-4\)
\(=2-4\)
\(=-2\)
a) \(P\left(x\right)=3x^5+5x-4x^4-2x^3+6+4x^2\)
\(P\left(x\right)=3x^5-4x^4-2x^3+5x+6+4\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)+\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5+2x^4-2x^3+3x^2-x\)
\(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2-4x+6\)
\(P\left(x\right)-Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5-2x^4+2x^3-3x^2+x\)
\(P\left(x\right)-Q\left(x\right)=2x^5-6x^4+x^2+6x+6\)
P/S : Câu trên mình sắp xếp sai phần P(x) nha. Tại nhìn nhìn 4x^2 mà tưởng là 4.