Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh nghĩ là các bạn nên vào các group fb để luyện thêm đề, cũng như mua gói luyện của OLM vì như thế các bạn sẽ đa dạng nguồn đề luyện ôn hơn. Càng đa dạng càng tiếp cận được nhiều thôi nè.
ĐKXĐ: \(x\in\left[0;2018\right]\)
\(y'=\dfrac{1009-x}{\sqrt{2018x-x^2}}=0\Rightarrow x=1009\)
Hàm đồng biến trên \(\left(0;1009\right)\)
Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)
Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)
Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Ta có: \(S=OA+OB+OC=a+b+c\)
Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)
Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)
\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)
\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)
Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)
Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)
Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.
Chọn C
Khối hai mươi mặt đều có các mặt là tam giác nên thuộc loại 3 ; 5 .