Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chứng minh công thức như trong link này để sử dụng nha :
https://hoc24.vn/hoi-dap/question/639032.html
ta có : \(BC^2=AB^2+AC^2+2AB.AC.cosA\)
\(\Leftrightarrow25^2=20^2+AC^2+2.20.AC.cos80\)
\(\Rightarrow AC\simeq12\)
ta có : \(AC^2=AB^2+BC^2+2.AB.BC.cosB\)
\(\Leftrightarrow cosB=\dfrac{AC^2-AB^2-BC^2}{2AB.BC}=\dfrac{12^2-20^2-25^2}{2.20.25}=-0,881\)
\(\Rightarrow\widehat{B}\simeq152^o\)
vậy ...............................................................................................................................
Aki Tsuki, Mysterious Person, Phùng Khánh Linh, Nhã Doanh, Trịnh Công Mạnh Đồng, Quoc Tran Anh Le, Nguyễn Thị Ngọc Thơ, miyano shiho, Hung nguyen, Toyama Kazuha, lê thị hương giang, Mặc Chinh Vũ, Nào Ai Biết,...
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{B}\approx36^o52'\)
\(\Rightarrow\widehat{C}=180^o-90^o-36^o52'\approx53^o7'\)
a) Xét tam giác ABC có:
\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)
c) Áp dụng HTL:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABC vuông tại A có Ah đường cao
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)
\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)