K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

Đáp án B

x 2 − x + 3 = x 2 − 2. 1 2 x + 1 4 + 11 4                                 = x − 1 2 2 + 11 4 > 0 , ∀ x ∈ R

Vậy tập xác định của hàm số là: R

2 tháng 4 2017

a) Tập xác định của f(x) :

A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}

- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0

Theo định lí dấu của tam thức:

x2 + 3x + 4 ≥ 0 ∀x ∈R

-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5

-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]

b) A/B = [3, 4]

R\(A\B) = (-∞, 3) ∪ (4, +∞)



Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

13 tháng 4 2016

a) (-2; 3) (1; 5) = (-2; 1];

b) (-2; 3) [1; 5) = (-2; 1);

c) R (2; +∞) = (- ∞; 2]

d) R (-∞; 3] = (3; +∞).

13 tháng 4 2016

a) (-2; 3) (1; 5) = (-2; 1];

b) (-2; 3) [1; 5) = (-2; 1);

c) R (2; +∞) = (- ∞; 2]

d) R (-∞; 3] = (3; +∞).

—————————-

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

17 tháng 10 2019

Mọi người giải thích chi tiết cho em với ạ.Em cảm ơn

18 tháng 10 2019

y xác định khi :

X3 - 1 \(\ne\)0

=> X \(\ne\)1.

Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))

a) Để K=R thì ta cần tìm A sao cho với mọi X\(\in R\)thì phân số đã cho xác định

ĐKXĐ : X2 - 6X + A + 2 \(\ne\)0

Ta có : X2 - 6X + A + 2 =0

\(\Delta\)=36 - 4A - 8

       =28 - 4A

mà  X2 - 6X + A + 2 \(\ne\)0 nên 28-4A <0

=> A > 7

NV
13 tháng 10 2019

a/ Để hàm số khác định trên R

\(\Rightarrow x^2-6m+m-2\ne0\) \(\forall x\)

\(\Rightarrow\Delta'=9-\left(m-2\right)< 0\Rightarrow m>11\)

b/ Tương tự: \(\Delta'=m^2-4< 0\Rightarrow-2< m< 2\)

c/ ĐKXĐ: \(\left\{{}\begin{matrix}2x-3m+4\ge0\\x+m-1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{3m-4}{2}\\x\ne1-m\end{matrix}\right.\)

Để hàm xác số định trên D thì: \(\left\{{}\begin{matrix}\frac{3m-4}{2}\le0\\1-m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le\frac{4}{3}\\m>1\end{matrix}\right.\)

\(\Rightarrow1< m\le\frac{4}{3}\)

31 tháng 3 2020

jup mình vs các bạn

31 tháng 3 2020

Để hàm số \(y=\sqrt{x^2-mx-2m+3}\) có tập xác định là R thì:

\(x^2-mx-2m+3\ge0\)

Ta có:\(\Delta_x=m^2-4\left(3-2m\right)\ge0\)

\(\Leftrightarrow m^2-8m-12\ge0\)

\(\Leftrightarrow\left(m^2-2\cdot4m+16\right)-28\ge0\)

\(\Leftrightarrow\left(m-4\right)^2\ge28\)

\(\Leftrightarrow-\sqrt{28}+4\le m\le\sqrt{28}+4\)

P/S:Số xấu,không chắc