Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{x\left(x+4\right)}=\sqrt{\frac{\left(x+4\right)\left(x-4\right)}{2}};dkxđ;x\le-4;x\ge4\)
\(\Leftrightarrow x\left(x+4\right)=\frac{\left(x+4\right)\left(x-4\right)}{2}\)
\(\Leftrightarrow\left(x+4\right)\left(2x-x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\left(TM\right)\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
a: Vì 7-9+2=0 nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{2}{7}\end{matrix}\right.\)
b: Vì 23-(-9)-32=0 nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{32}{23}\end{matrix}\right.\)
c: Vì \(1975+4-1979=0\)
nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=-\dfrac{1979}{1975}\end{matrix}\right.\)
d: Vì \(5+\sqrt{2}+5-\sqrt{2}-10=0\)
nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{-10}{5+\sqrt{2}}\end{matrix}\right.\)
e: Vì \(\dfrac{1}{3}-\left(-\dfrac{3}{2}\right)-\dfrac{11}{6}=0\)
nên pt có hai nghiệm là:
\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{11}{6}:\dfrac{1}{3}=\dfrac{11}{6}\cdot3=\dfrac{11}{2}\end{matrix}\right.\)
f: Vì 31,1-50,9+19,8=0 nên phương trình có hai nghiệm là:
\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{198}{311}\end{matrix}\right.\)
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13
<=> \(\sqrt{x^2-4x}=\sqrt{\dfrac{x^2}{2}-8}\)
<=> \(x^2-4x=\dfrac{x^2}{2}-8\)
<=>\(\dfrac{x^2}{2}-4x+8=0\)
<=> \(\left(\dfrac{x}{2}-2\right)\left(x-4\right)=0\)
<=> \(\left[{}\begin{matrix}\dfrac{x}{2}=2\\x=4\end{matrix}\right.< =>x=4\)
vậy x=4