Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
A/ \(2\left(5x-3\right)=7x-18.\)
\(10x-6=7x-18\)
\(10-7x=6-18\)
\(3x=-12\)
\(x=-\frac{12}{3}=4\)
\(\Rightarrow S=\left\{4\right\}\)
B/ \(3x\left(x-2\right)+2x-4=0\)
\(3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\left(x-2\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)
\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)
C/ \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)
\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)
\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)
\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)
\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)
\(\Rightarrow2x^2-2x-12=3x+15\)
(chuyển vế r làm tiếp)
Bài 1 :
\(a,2\left(5x-3\right)=7x-18\)
\(\Leftrightarrow10x-6=7x-18\)
\(\Leftrightarrow10x-7x=6-18\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
PT có nghiệm S = { -4 }
\(b,3x\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)
KL : ............
\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\Leftrightarrow4x+8-6x+18=3x+15\)
\(\Leftrightarrow4x-6x-3x=-8-18+15\)
\(\Leftrightarrow x=-9\)
KL : .......
a) 8x - 3 = 5x + 12
<=> 8x - 5x = 12 + 3
<=> 3x = 15
<=> x = 5
b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2
<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)
=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)
<=> -x^2 + 2x = x^3 - 2x^2
<=> -x^2 + 2x - x^3 + 2x^2 = 0
<=> x^3 - x^2 - 2x = 0
<=> x(x + 1)(x - 2) = 0
<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0
<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)
Vậy: phương trình có tập nghiệm: S = {0; -1}
c) |x - 5| = 3x + 1
Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)
+) Nếu x > 5, ta có phương trình:
x - 5 = 3x + 1
<=> x - 3x = 1 + 5
<=> -2x = 6
<=> x = -3 (ktm)
+) Nếu x < 5, ta có phương trình:
-(x - 5) = 3x + 1
<=> -x + 5 = 3x + 1
<=> -x - 3x = 1 - 5
<=> -4x = -4
<=> x = 1 (tm)
Vậy: phương trình có tập nghiệm: S = {1}
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\left(10x+3\right):8=\left(7-8x\right):12\)
\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)
\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)
\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)
\(\frac{23}{12}x=\frac{5}{24}\)
\(x=\frac{5}{46}\)
E mới lớp 6 nên giải sai thì thông cảm ạ UwU
\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)
\(< =>\frac{x}{45}=\frac{32}{45}\)
\(< =>x=32\)
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)
\(< =>120x+36=56-64x\)
\(< =>184x=56-36=20\)
\(< =>x=\frac{20}{184}=\frac{5}{46}\)
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b)\(x^2-2xy+y^2-z^2\)
\(=\left(x^2-2xy+y^2\right)-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
c)\(5x-5y+ax-ay\)
\(=5\left(x-y\right)+a\left(x-y\right)\)
\(=\left(5+a\right)\left(x-y\right)\)
d)\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Bài 2 :
a) \(x^2-2xy-47^2+y^2\)
\(=x^2-2xy+y^2-47^2\)
\(=\left(x-y\right)^2-47^2\)
\(=\left(x-y-47\right)\left(x-y+47\right)\)
Bài 1
a) x2 - xy + x - y
= x.(x - y) + (x - y)
= (x - y) . (x + 1)
b) x2 - 2xy + y2 - z2
= (x - y)2 - z2
= (x - y - z) . (x - y + z)
c) 5x - 5y + ax - ay
= 5 . (x - y) + a . (x - y)
= (5 + a ) . (x - y)
d) a3 - a2x - ay + xy
=
a3−a2x−ay+xya3−a2x−ay+xy
=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)
=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)
=(a2−y)(a−x)
Giải :
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{2\left(5x-2\right)+6x}{6}=\frac{6+3\left(5-3x\right)}{6}\)
\(\Leftrightarrow10x-4+6x=6+15-9x\)
\(\Leftrightarrow10x+6x+9x=6+15+4\)
\(\Leftrightarrow25x=25\Leftrightarrow x=1\).
Vậy tập nghiệm của phương trình đã cho là : S = {1}.
Một cách khác dài dòng hơn :)
\(\frac{5x-2}{3}+x=1+\frac{5-3x}{2}\)
\(\Leftrightarrow\frac{5}{3}x+\frac{-2}{3}+x=1+\frac{5}{2}+\frac{-3}{2}x\)
\(\Leftrightarrow\left(\frac{5}{3}x+x\right)+\left(\frac{-2}{3}\right)=\left(\frac{-3}{2}x\right)+\left(1+\frac{5}{2}\right)\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}=\frac{-3}{2}x+\frac{7}{2}\)
\(\Leftrightarrow\frac{8}{3}x+\frac{-2}{3}+\frac{3}{2}x=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x+\frac{-2}{3}=\frac{7}{2}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{7}{2}+\frac{2}{3}\)
\(\Leftrightarrow\frac{25}{6}x=\frac{25}{6}\)
\(\Leftrightarrow x=\frac{25}{6}:\frac{25}{6}=1\)
=> x = 1