\(3x^2 + 10x < -3 \) ?

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 8:

$(x-1)(2+x)>0$ thì có 2 TH xảy ra:

TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)

TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)

Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 7:

$|x^2+x-12|=|(x-3)(x+4)|$

Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$

$\Rightarrow |x^2+x-12|=-(x^2+x-12)$

BPT trở thành: $-(x^2+x-12)< x^2+x+12$

$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$

Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$

Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$

NV
23 tháng 6 2020

ĐKXĐ: \(x\ge3\)

Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)

\(\Rightarrow2\left(t^2+3\right)-t=m\Leftrightarrow2t^2-t+6=m\)

Xét \(f\left(t\right)=2t^2-t+6\) với \(t\ge0\)

\(-\frac{b}{2a}=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=\frac{47}{8}\Rightarrow f\left(t\right)\ge\frac{47}{8}\)

\(\Rightarrow\) Để pt có nghiệm thì \(m\ge\frac{47}{8}\)

NV
9 tháng 5 2019

Câu 1:

\(\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)

Câu 2:

Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)

Tất cả các đáp án đều sai

Câu 3:

Để pt có 2 nghiệm pb

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)

\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta

10 tháng 7 2017

bài 2

f(x) =|...|

ghép g(x) =x^2 -2x-3

và -(x^2 -2x-3)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

m<0 vô nghiệm

m=0 2 nghiệm

m=4 3 nghiệm

0<n<4 4 nghiệm

a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)

=>f(x) lẻ

b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)

\(=f\left(x\right)\)

=>f(x) chẵn

c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)

=>f(x) lẻ

14 tháng 6 2018

điều kiện : x >-1/2

⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0

ap dụng bất đẳng thức Cauchy ta có:

f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4

⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi

2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)

VẬY ĐÁP ÁN LÀ C