Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Nếu x = 0 :
=> (x - 1) < 0 ; (2x - 1) < 0 ; x2 + 2 > 0
=> (x -1)(2x - 1)(x2 + 2) > 0 (loại)
* Nếu \(x\ge1\)
=> (x - 1) \(\ge\)0 ; (2x -1) > 0 ; (x2 + 2) > 0
=> (x -1)(2x - 1)(x2 + 2) \(\ge\)0 (loại)
Vậy tập hợp các số nguyên x thoả mãn có số phần tử là 0.
Để \(\left(2x-7\right)\left(x+1\right)< 0\) <=> 2x - 7 và x + 1 là 2 số trái dấu
\(TH1:\hept{\begin{cases}2x-7>0\\x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3,5\\x< -1\end{cases}}}\) (loại)
\(TH2:\hept{\begin{cases}2x-7< 0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3,5\\x>-1\end{cases}\Rightarrow}x=0;1;2;3}\) (nhận)
Vậy \(x=0;1;2;3\)
Tập hợp các số nguyên x thỏa mãn (x+1).(-x+5).(2x-2).|x+7| lớn hơn hoặc bằng 0