K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(A=n^4-n^3+5n^2-2n+13=n^2\left(n^2+3\right)-n\left(n^2+3\right)+2\left(n^2+3\right)+\left(n+3\right)+4\\ \)Vậy: \(n^2\in U\left(4\right)\Rightarrow n=\left\{-2;-1;1;2\right\}\)

14 tháng 3 2017

mơn pạn nhìu nkaleuleu

15 tháng 3 2017

X=0;Y=0

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

17 tháng 10 2017

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)....\left(2^{64}+1\right)+1\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)....\left(2^{64}+1\right)+1\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)......\left(2^{64}+1\right)+1\)

\(A=\left(2^8-1\right)\left(2^8+1\right)......\left(2^{64}+1\right)+1\)

\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(A=2^{128}-1+1=2^{128}\)

17 tháng 10 2017

Ribi Nkok Ngok hãy cảm nhận sự khác biệt cách tiếp cận sử lý bài toán (B là huyền thoại)\(B=1^2-2^2+3^2-4^2+....-2010^2+2011^2\)

\(\text{B=1+(3-2)(3+2) +(5-4)(5+4)+....+(2011-2010)(2011+2010)}\)\(\text{B=1+(3+2) +(5+4)+....+(2011+2010)}\)\(B=1+2+3+...+2011\)

\(B=\dfrac{2011.2012}{2}=2011.1006=2023066\)

6 tháng 4 2017

Lời giải

\(\left(x^2+x\right)^2+\left(x^2+x\right)=y^2-3\)

\(\left(2x^2+2x+1\right)^2=4y^2-11\)

\(\Leftrightarrow Z^2-P^2=11\Rightarrow\left\{{}\begin{matrix}Z^2=36\\P^2=25\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\pm3\\2x^2+2x+1=\pm5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\end{matrix}\right.\)

29 tháng 10 2017

a.) \\(\\left(a+b+c\\right)^3-a^3-b^3-c^3\\)

\\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc-a^3-b^3-c^3\\)\\(=3\\left(3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc\\right)\\)

\\(=3\\left(abc+a^2b+a^2c+ac^2+b^2c+ab^2+abc+bc^2\\right)\\)

\\(=3\\left[ab\\left(a+c\\right)+ac\\left(a+c\\right)+b^2\\left(a+c\\right)+bc\\left(a+c\\right)\\right]\\)

\\(=3\\left(a+c\\right)\\left(ab+ac+bc+b^2\\right)\\)

\\(=3\\left(a+c\\right)\\left[a\\left(b+c\\right)+b\\left(b+c\\right)\\right]\\)

\\(=3\\left(a+c\\right)\\left(a+b\\right)\\left(b+c\\right)\\)

b) 4a2b2-(a2  +b2-c2)2

=(2ab+a2+b2-c2)(2ab-a2-b2+c2

=[(a+b)2-c2][c2-(a-b)2]

=(a+b+c)(a+b-c)(c+a-b)(c-a+b)

 

30 tháng 10 2017

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc-a^3-b^3-c^3\)

\(=3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\)

\(=3\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\right)\)

\(=3\left(ab\left(a+b\right)+b^2c+abc+bc^2+c^2a+ca^2+abc\right)\)

\(=3\left(ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\right)\)

\(=3\left(a+b\right)\left(ab+bc+c^2+ac\right)\)

\(=3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

18 tháng 7 2017

a, Theo bài ra ta có:

\(=x^3-x-2x+2\)

\(=x\left(x^2-1\right)-2\left(x-1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-2\right)\)

b, theo bài ra ta có:

\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)

\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x-3\right)\)

c,Theo bài ra ta có:

\(=x^3+5x^2+3x^2+15x+2x+10\)

\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2+3x+2\right)\)

\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)

\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)

CHÚC BẠN HỌC TỐT...........

18 tháng 7 2017

a) \(x^3-3x+2\)

= \(x^3-x^2+x^2-x-2x+2\)

= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+x-2\right)\)

= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)

= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)

= \(\left(x-1\right)^2\left(x+2\right)\)

b) \(x^3-5x^2+3x+9\)

= \(x^3+x^2-6x^2-6x+9x+9\)

= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2-6x+9\right)\)

= \(\left(x+1\right)\left(x-3\right)^2\)

c) \(x^3+8x^2+17x+10\)

= \(x^3+x^2+7x^2+7x+10x+10\)

= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+7x+10\right)\)

= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)

= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)

= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)

d) \(x^3-3x^2+6x+4\)

Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:

\(x^3+3x^2+6x+4\)

= \(x^3+x^2+2x^2+2x+4x+4\)

= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+2x+4\right)\)

Học tốt nhé :))

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

10 tháng 9 2018

a) \(x^2-6x+3\)

\(=x^2-2.x.3+9-6\)

\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)

\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)

b) \(9x^2+6x-8\)

\(=\left(3x\right)^2+2.3x+1-9\)

\(=\left(3x+1\right)^2-3^2\)

\(=\left(3x+1-3\right)\left(3x+1+3\right)\)

\(=\left(3x-2\right)\left(3x+4\right)\)

10 tháng 9 2018

d) \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

e) \(x^3+4x^2-29x+24\)

\(=x^3+8x^2-4x^2-32x+3x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)