Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a(b+ 2001) = ab + 2001a
b(a+ 2001) = ab + 2001b
Vì b > 0 nên b + 2001 > 0
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001 / b+ 2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
với a=b \(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
với a<b\(\Rightarrow\frac{a}{b}\frac{a+2001}{b+2001}\)
a/b=a(b+2001)/b(b+2001)=ab+2001a/b(b+2001)
a+2001/b+2001=(a+2001)b/(b+2001)b=ab+2001b/b(b+2001)
vì b>0 nên mẫu của 2 phân số tử dương
ab+2001a với ab+2001b
nếu a<b =>tử số phân số thứ nhất bé thua tử số phân số thứ hai
=>\(\frac{a}{b}\)<a+\(\frac{2001}{b}\)+2001
-nếu a=b=>hai phân số bằng nhau bằng 1
-nếu a>b=>tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=>\(\frac{a}{b}\)>\(\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Quy đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(a+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì \(b>0\)nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh \(ab+2001a\)với \(ab+2001b\)
- Nếu \(a< b\)\(\Rightarrow\)tử số phân số thứ nhất\(< \)phân số thứ hai.
\(\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu \(a=b\Rightarrow\)hai phân số bằng nhau \(=1\)
- Nếu \(a>b\)\(\Rightarrow\)tử số phân số thứ nhất \(>\)tử số phân số thứ hai.
\(\Rightarrow\)\(\frac{a}{b}>\frac{a+2001}{b+2002}\)
ỦNG HỘ NHA CÁC THÁNH ONLINE MATH
THANKS NHIỀU
Qui đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> \(\frac{a}{b}\frac{a+2001}{b+2001}\)
Xét 3 TH :
1) a < b
Khi đó ta có ab + 2001a < ab + 2001b hay a(b+2001) < b(a+2001)
Chia 2 vế cho b(b+2001) ta được a/b < (a+2001)/(b+2001)
2) a = b ---> a/b = (a+2001)/(b+2001) = 1
3) a > b
Khi đó ta có ab + 2001a > ab + 2001b hay a(b+2001) > b(a+2001)
Chia 2 vế cho b(b+2001) ta được a/b > (a+2001)/(b+2001)
Tóm lại
a/b < (a+2001)/(b+2001) nếu a < b
a/b = (a+2001)/(b+2001) nếu a = b
a/b > (a+2001)/(b+2001) nếu a > b
Ta có a,b là 2 số bất kì nên luôn xảy ra 3 TH
TH1 a>b
\(\Rightarrow ab+2001a>ab+2001b\)
TH2 a=b
\(\Rightarrow ab+2001a=ab+2001b\)
TH 3 a<b
\(\Rightarrow ab+2001a< ab+2001b\)
Hok tốt !!!!!!!!!!!!!!
thx bạn]