K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Chu vi tam giác ABC là: AB + BC + CA = 3 + 7 + 5 = 15 (cm)

Δ A’B’C’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC ⇒ Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

∆ABC ∽ ∆A'B'C' => ABABABA′B′ = BCBCBCB′C′= CACACAC′A′ = CABCCABCCABCCA′B′C′

hay 3AB3A′B′ = 7BC7B′C′ = 5AC5A′C′ = CABC55CABC55 = 311311

=> A'B' = 11cm;

B'C' = 7.1137.113 ≈ 25.67 cm

A'C' = 5.1135.113 ≈ 18,33 cm

22 tháng 4 2017

bài 30 trang 75 SGK Toán 8 Tập 2

Theo bài ra ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

11 tháng 4 2018

Ban ve hinh va chung minh giup to voi

11 tháng 4 2018

ban giai giup toi bai toan nay nha to cam on nhieu

4 tháng 3 2018

Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm

17 tháng 4 2020

A B C A' B' C'

\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)

Áp dụng tính chất DTSBN , ta có :

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)

Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)

Với CABC và CA'B'C'  lần lượt là chu vi của tam giác ABC , A'B'C' 

\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)

\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)

\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)

thiếu Tham Khảo kìa 

10 tháng 1 2019

Theo giả thiết D, E, F lần lượt là trung điểm các cạnh AB, BC và CA nên DE, EF, FD là các đường trung bình của tam giác ABC. Do đó, ta có:

DE = 1/2 AC,EF = 1/2 AB,FD = 1/2 BC (1)

Mặt khác, M là trung điểm của OA, P là trung điểm của OB, Q là trung điểm của OC, xét các tam giác OAB, OBC, OCA, ta cũng có:

MP = 1/2 AB,PQ = 1/2 BC, QM = 1/2 AC. (2)

Từ đẳng thức (1) và (2), ta suy ra :

DE = QM, EF = MP, FD = PQ.

Do đó ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy △ DEF đồng dạng  △ QMP theo tỉ số đồng dạng k = 1, trong đó D, E, F lần lượt tương ứng với các đỉnh Q, M, P.

a: Ta có: ΔA'B'C'∼ΔABC

nên A'B'/AB=B'C'/BC=A'C'/AC

=>A'B'/6=B'C'/12=A'C'/8=3/2

=>A'B'=9cm; B'C'=18cm; A'C'=12cm

b: Ta có: ΔA'B'C'∼ΔABC

nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)