Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)vv
câu a phải làm như này chứ
A. Xét tam giác NMA và tam giác NPB có:
NM=NP ( tam giác NMP cân)
MA=PB (gt)
Góc M= góc P (tam giác NMP cân )
=> tam giác NMA= tam giác NPB( c.g.c)
=> NA=NB( hai cạnh t.ứng)
=> tam giác NAB cân
( Hình bạn tự vẽ giúp mình nha )
a) Xét △ ABM và △ ACN có
AB = AC
BM = CN
\(\widehat{ABM}=\widehat{ACN}\)
⇒ △ ABM = △ ACN ( c - g - c )
⇒ AM = AN ( hai cạnh tương ứng )
Suy ra: △ AMN cân tại A
b) Xét tam giác vuông BME và tam giác vuông CNF ta có:
MB = CN
\(\widehat{EMB}=\widehat{CNF}\) ( vì △ AMN cân tại A )
⇒ △ BME = △ CNF ( ch - gn )
c) Vì △ BME = △ CNF ( cmt )
⇒ ME = CF
⇒ EA = FA
Xét tam giác vuông EAO và tam giác vuông AOF ta có:
AE = FA
AO cạnh chung
⇒ △ EOA = △ FOA ( ch - cgv )
⇒ \(\widehat{EAO}=\widehat{FAO}\)
Hay AO là tia phân giác góc \(\widehat{MAN}\)
d) Ta có: EO ⊥ AM
MH ⊥ AM
⇒ EO // MH
Lại có: \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )
Từ đó suy ra: A, O, H thẳng hàng
a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(cmt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
a) Xét tam giác PQE và tam giác PRE ta có
PE là cạnh chung cũng là cạnh hóc vuông
PQ=PR ( do tam giác PQR là tam giác cân tại P)
Do đó Tam giác PQR=PRE ( ch - cgv)
suy ra: EQ=ER( do 2 cạnh tương ứng )
b) Ta có tam giác PQR=PRE ( chứng minh câu a )
Từ đó suy ra: QE=ER ( do 2 cạnh tương ứng )
Mà:
ME=MQ+QE
EN=RN+ER
Ta lại có MQ=RN và QE=ER
Từ đó ta có ME=EN
xét 2 tam giác vuông: tam giác PEM và tam giác PEN ta có
PE cạnh chung
PEM =PEN =90*
ME=EN ( chứng minh trên )
Do đó tam giác PEM=PEN ( c-g-c)
Suy ra: góc M= góc N ( Do 2 góc tuong ứng )
Vậy yam giác PMN là tam giác cân tại P ( do góc M=góc N)
Câu c) có sai đề ko bạn
câu D mình đang làm
Lm xog câu d) gửi cho mik nhé