K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

9 tháng 3 2017

a, Ta có ∆DEF vuông vì  D E 2 + D F 2 = F E 2

b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm

K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '

d, Tìm được DM=3cm, FM=5cm và EM =  3 5 cm

e, f, Ta có:  sin D F K ^ = D K D F ;  sin D F E ^ = D E E F

=>  D K D F = D E E F => ED.DF = DK.EF

10 tháng 11 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

=>\(EF^2=0,9^2+12^2=144,81\)

=>\(EF=\sqrt{144,81}\)(cm)

Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)

=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)

b: Xét ΔDEF vuông tại D có

\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)

\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)

\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)

\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)

a: \(\sin\widehat{E}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

a: Xét ΔDFE vuông tại D có

\(FE^2=DE^2+DF^2\)

hay FE=7,5(cm)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

b: \(\cos\widehat{E}=\dfrac{3}{5}\)

nên \(\widehat{E}=53^0\)

a: Xét ΔDFE vuông tại D có

\(FE^2=DE^2+DF^2\)

hay FE=7,5(cm)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

b: \(\cos\widehat{E}=\dfrac{3}{5}\)

nên \(\widehat{E}=53^0\)

15 tháng 10 2020
Mọi người giúp mk với ạ!Mk sắp kiểm tra rồi😭😭
3 tháng 10 2021

\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)

\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)