K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

D E F M K N H

30 tháng 7 2018

a) Xét tgiac DEM  và tgiac DFM có:

DE = DF

góc DEM = góc DFM

EM = FM

suy ra: tgiac DEM =  tgiac DFM

=> góc DME = góc DMF

mà 2 góc này kề bù

=> góc DME = góc DMF = 900

hay DM vuông góc với EF

b)  Xét tgiac MDE và tgac MNF có:

DM = NM

góc DME = góc NMF

EM = FM

suy ra: tgiac MDE = tgiac MNF

=> DE = FN

c) Tgiac MDE vuông tại M, MH là đường trung tuyến

=> MH = 1/2 DE

Tương tự: MK = 1/2 FN

mà   DE = FN

=> MH = MK

a: Xét ΔDEM và ΔDFM có

DE=DF

EM=FM

DM chung

Do đó: ΔDEM=ΔDFM

b: Ta có: ΔDEF cân tại D

mà DM là đường trung tuyến

nên DM là đường cao

c: Xét tứ giác DENF có 

M là trung điểm của DN

M là trung điểm của FE

Do đó: DENF là hình bình hành

Suy ra: DE//FN

24 tháng 12 2020

a) Xét △DEM và △KFM có

DM=KM(giả thiết)

góc DME=góc KMF(2 góc đối đỉnh)

EM=MF(Vì M là trung điểm của EF)

=>△DEM =△KFM(c-g-c)

=> góc MDE=góc MKF (2 góc tương ứng)

hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF

=>DE//KF

b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ

Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có

HD=HP

HE là cạnh chung

=>   △DHE= △PHE(2 cạnh góc vuông)

=> góc DEM=góc PEM

=> EH là tia phân giác của góc DEP 

   hay EF là tia phân giác của góc DEP 

vậy EF là tia phân giác của góc DEP 

 

 

 

 

 

28 tháng 11 2017

chiu bai nay ko biet lam

22 tháng 3 2020

a) Áp dụng định lí Pi-ta-go vào \(\Delta DEF\) vuông tại \(E\), ta có:

\(DF^2=DE^2+EF^{2\:}\)

\(\Leftrightarrow DE^2=DF^2-EF^2\)

\(\Leftrightarrow DE^2=39^2-36^2=2817\)

\(\Rightarrow DE=\sqrt{2817}\)

b) Xét \(\Delta DEM\)\(\Delta NFM\) có:

\(DM=NM\left(g.t\right)\)

\(\widehat{DME}=\widehat{NMF}\) (đối đỉnh)

\(ME=MF\left(g.t\right)\)

\(\Rightarrow\Delta DEM=\Delta NFM\left(c.g.c\right)\)

\(\Rightarrow DE=FN\left(đpcm\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{NFM}=90^o\) \(\Rightarrow DE//FN\left(đpcm\right)\)

Chúc bạn học tốt@@

22 tháng 3 2020
https://i.imgur.com/SGkeTU2.jpg
15 tháng 11 2019

D E F M I H G = = - - x x

Vì M là trung điểm của EF => ME = MF

Xét △MDE và △MIF

Có : ME = MF (gt)

     DME = FMI (2 góc đối đỉnh)

       MD = MI (gt)

=> △MDE = △MIF (c.g.c)

=> DE = IF (2 cạnh tương ứng)

Và DEM = MFI (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> DE // IF (dhnb)

b, Vì △MDE = △MIF (cmt)

=> DE = IF (2 cạnh tương ứng)

Xét △HDE vuông tại H và △HGE vuông tại H 

Có: HD = HG (gt)

      HE : cạnh chung

=> △HDE = △HGE (cgv)

=> DE = GE (2 cạnh tương ứng)

Mà DE = IF (cmt)

=> EG = IF (đpcm)

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

a: Sửa đề: Cm ED//FN và FN vuông góc với FD

Xét tứ giác DENF có

M là trung điểm chung của DN và EF

góc EDF=90 độ

Do đó: DENF là hình chữ nhật

=>ED//FN và FN vuông góc với FD